Invariant Geometric Structures on Statistical Models

被引:2
|
作者
Schwachhoefer, Lorenz [1 ]
Ay, Nihat [2 ]
Jost, Juergen [2 ]
Hong Van Le [3 ]
机构
[1] Tech Univ Dortmund, Vogelpothsweg 87, D-44221 Dortmund, Germany
[2] Max Planck Inst Math Nat Wissensch, D-04103 Leipzig, Germany
[3] Math Inst ASCR, Prague 11567, Czech Republic
关键词
D O I
10.1007/978-3-319-25040-3_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We review the notion of parametrized measure models and tensor fields on them, which encompasses all statistical models considered by Chentsov [6], Amari [3] and Pistone-Sempi [10]. We give a complete description of n-tensor fields that are invariant under sufficient statistics. In the cases n = 2 and n = 3, the only such tensors are the Fisher metric and the Amari-Chentsov tensor. While this has been shown by Chentsov [7] and Campbell [5] in the case of finite measure spaces, our approach allows to generalize these results to the cases of infinite sample spaces and arbitrary n. Furthermore, we give a generalisation of the monotonicity theorem and discuss its consequences.
引用
收藏
页码:150 / 158
页数:9
相关论文
共 50 条
  • [41] Statistical models of transitive and intransitive dominance structures
    Tufto, J
    Solberg, ES
    Ringsby, TH
    ANIMAL BEHAVIOUR, 1998, 55 : 1489 - 1498
  • [42] Lower bounds for invariant statistical models with applications to principal component analysis
    Wahl, Martin
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (03): : 1565 - 1589
  • [43] The effect of microscopic correlations on the information geometric complexity of Gaussian statistical models
    Ali, S. A.
    Cafaro, C.
    Kim, D. -H.
    Mancini, S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (16) : 3117 - 3127
  • [44] Shape models for image segmentation and geometric analysis of biological structures
    Baum, D.
    Knoetel, D.
    Dean, M. N.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2019, 59 : E12 - E12
  • [45] Natural differentiable structures on statistical models and the Fisher metric
    Lê H.V.
    Information Geometry, 2024, 7 (Suppl 1) : 271 - 291
  • [46] Statistical system identification of structures using ARMA models
    Conte, JP
    Kumar, S
    PROBABILISTIC MECHANICS & STRUCTURAL RELIABILITY: PROCEEDINGS OF THE SEVENTH SPECIALTY CONFERENCE, 1996, : 142 - 145
  • [47] Fast Correspondences for Statistical Shape Models of Brain Structures
    Bernard, Florian
    Vlassis, Nikos
    Gemmar, Peter
    Husch, Andreas
    Thunberg, Johan
    Goncalves, Jorge
    Hertel, Frank
    MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784
  • [48] Geometric invariant theory and flips
    Thaddeus, M
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (03) : 691 - 723
  • [49] Free energy as a geometric invariant
    Pollicott, M
    Weiss, H
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 260 (02) : 445 - 454
  • [50] Relative geometric invariant theory
    Schmitt, Alexander H. W.
    ENSEIGNEMENT MATHEMATIQUE, 2021, 67 (3-4): : 301 - 330