Freeway Traffic Flow Prediction Based on Hidden Markov Model

被引:1
|
作者
Jiang, Jiyang [1 ]
Guo, Tangyi [1 ]
Pan, Weipeng [1 ]
Lu, Yi [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Automat, Nanjing, Peoples R China
关键词
Traffic volume prediction; Hidden Markov Model; Renewal process; Numerical characteristics;
D O I
10.1117/12.2627779
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, scientific and reasonable traffic volume prediction plays an important role especially in the traffic infrastructure planning. In the recent research, establishing a robust mathematical model for traffic volume prediction becomes a challenging problem. In our research, Hidden Markov Model (HMM) is constructed based on the numeral characteristics of monthly traffic volume for each freeway in Jiangsu Province. By analyzing the Markov property of the monthly flat peak traffic volume and the nonlinear effect of the monthly peak traffic volume, we further predict the future monthly traffic volume. Compared with the traditional models, our proposed model has significant advantages in some evaluation indicator, such as MRE,MAE,RMSE. Further more, The construction of this model only depends on the numerical characteristics of historical traffic volume data, which has the advantages of convenience as well as broad application prospects.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Model of freeway traffic flow based upon theory of stochastic control
    Li, Baoqiang
    Fan, Bingquan
    Shanghai Haiyun Xueyuan Xuebao/Journal of Shanghai Maritime University, 2001, 22 (04):
  • [32] Hidden Markov Model Based Islanding Prediction in Smart Grids
    Kumar, Dhruba
    Bhowmik, Partha Sarathee
    IEEE SYSTEMS JOURNAL, 2019, 13 (04): : 4181 - 4189
  • [33] Gene-prediction algorithm based on hidden Markov model
    College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
    Dalian Haishi Daxue Xuebao, 2008, 4 (41-44):
  • [34] Welding Quality Prediction Method Based on Hidden Markov Model
    Sun, Xiaobao
    Liu, Yang
    Wang, Dongyao
    Ye, Hang
    2022 IEEE 2ND INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SOFTWARE ENGINEERING (ICICSE 2022), 2022, : 236 - 240
  • [35] Modeling and Prediction of Vehicle Routes Based on Hidden Markov Model
    Akabane, Ademar T.
    Pazzi, Richard W.
    Madeira, Edmundo R. M.
    Villas, Leandro A.
    2017 IEEE 86TH VEHICULAR TECHNOLOGY CONFERENCE (VTC-FALL), 2017,
  • [36] Autoregressive State Prediction Model Based on Hidden Markov and the Application
    Zhao, Zhiguo
    Wang, Yeqin
    Feng, Mengqi
    Peng, Guangqin
    Liu, Jinguo
    Jason, Beth
    Tao, Yukai
    WIRELESS PERSONAL COMMUNICATIONS, 2018, 102 (04) : 2403 - 2416
  • [37] Autoregressive State Prediction Model Based on Hidden Markov and the Application
    Zhiguo Zhao
    Yeqin Wang
    Mengqi Feng
    Guangqin Peng
    Jinguo Liu
    Beth Jason
    Yukai Tao
    Wireless Personal Communications, 2018, 102 : 2403 - 2416
  • [38] A Hidden Markov Model based Driver Intention Prediction System
    Tran, Duy
    Sheng, Weihua
    Liu, Li
    Liu, Meiqin
    2015 IEEE INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2015, : 115 - 120
  • [39] Modified time series prediction model of short-term freeway traffic flow
    Yang, Zhiyong
    Zhou, Tong
    Li, Yongfu
    Journal of Computational Information Systems, 2014, 10 (23): : 9967 - 9974
  • [40] Traffic and Vehicle Speed Prediction with Neural Network and Hidden Markov Model in Vehicular Networks
    Jiang, Bingnan
    Fei, Yunsi
    2015 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2015, : 1082 - 1087