Ferroelectric polymer-ceramic composite thick films for energy storage applications

被引:101
|
作者
Singh, Paritosh [1 ]
Borkar, Hitesh [1 ]
Singh, B. P. [1 ]
Singh, V. N. [1 ]
Kumar, Ashok [1 ]
机构
[1] Natl Phys Lab, CSIR, New Delhi 110012, India
来源
AIP ADVANCES | 2014年 / 4卷 / 08期
关键词
POLY(VINYLIDENE FLUORIDE) FILMS; POLYVINYLIDENE FLUORIDE; PHASE-TRANSITION; DIELECTRIC BEHAVIOR; RAMAN-SPECTROSCOPY; PVDF; MEMBRANES; PIEZOELECTRICITY; PYROELECTRICITY; PERFORMANCE;
D O I
10.1063/1.4892961
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We have successfully fabricated large area free standing polyvinylidene fluoride -Pb(Zr0.52Ti0.48)O-3 (PVDF-PZT) ferroelectric polymer-ceramic composite (wt% 80-20, respectively) thick films with an average diameter (d) similar to 0.1 meter and thickness (t) similar to 50 mu m. Inclusion of PZT in PVDF matrix significantly enhanced dielectric constant (from 10 to 25 at 5 kHz) and energy storage capacity (from 11 to 14 J/cm(3), using polarization loops), respectively, and almost similar leakage current and mechanical strength. Microstructural analysis revealed the presence of alpha and beta crystalline phases and homogeneous distribution of PZT crystals in PVDF matrix. It was also found that apart from the microcrystals, well defined naturally developed PZT nanocrystals were embedded in PVDF matrix. The observed energy density indicates immense potential in PVDF-PZT composites for possible applications as green energy and power density electronic elements. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Nanostructure-Level Modeling of Nonlinear Energy Storage in Polymer-Ceramic Nanocomposites
    Calame, Jeffrey P.
    FUNCTIONAL POLYMER NANOCOMPOSITES FOR ENERGY STORAGE AND CONVERSION, 2010, 1034 : 1 - 7
  • [22] Nanostructure-level modeling of nonlinear energy storage in polymer-ceramic nanocomposites
    Calame, Jeffrey P.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [23] A review of composite polymer-ceramic electrolytes for lithium batteries
    Yu, Xingwen
    Manthiram, Arumugam
    ENERGY STORAGE MATERIALS, 2021, 34 (34) : 282 - 300
  • [24] Polymer-Ceramic Composite Scaffolds for Osteochondral Tissue Engineering
    Douglas, T.
    Temel, B.
    Kurz, B.
    Sivananthan, S.
    Wiltfang, J.
    Warnke, P. H.
    TISSUE ENGINEERING PART A, 2009, 15 (05) : O8 - O8
  • [25] POLYMER-CERAMIC COMPOSITE FOR TOOTH-ROOT IMPLANT
    GREENBERG, AR
    KAMEL, I
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1976, 10 (05): : 777 - 788
  • [26] On the origin of conductivity enhancement in polymer-ceramic composite electrolytes
    Kumar, B
    Scanlon, LG
    Spry, RJ
    JOURNAL OF POWER SOURCES, 2001, 96 (02) : 337 - 342
  • [27] Direct Inkjet Printing of Dielectric Ceramic/Polymer Composite Thick Films
    Mikolajek, Morten
    Friederich, Andreas
    Kohler, Christian
    Rosen, Melanie
    Rathjen, Andreas
    Krueger, Klaus
    Binder, Joachim R.
    ADVANCED ENGINEERING MATERIALS, 2015, 17 (09) : 1294 - 1301
  • [28] Novel polymer-ceramic composites for conformable RF applications
    Hansford, Derek J.
    Sandhage, Kenneth H.
    2007 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-12, 2007, : 1574 - +
  • [29] PZT 'composite' ferroelectric thick films
    Corker, DL
    Zhang, Q
    Whatmore, RW
    Perrin, C
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2002, 22 (03) : 383 - 390
  • [30] Polymer-ceramic composites for bone graft applications.
    Bose, S
    Bandyopadhyay, A
    Hosick, HL
    Myers, T
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 220 : U251 - U251