Regularized extreme learning machine for multi-view semi-supervised action recognition

被引:47
|
作者
Iosifidis, Alexandros [1 ]
Tefas, Anastasios [1 ]
Pitas, Ioannis [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Informat, Thessaloniki 54124, Greece
关键词
Extreme learning machine; Semi-supervised learning; Multi-view learning; FRAMEWORK;
D O I
10.1016/j.neucom.2014.05.036
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, three novel classification algorithms aiming at (semi-)supervised action classification are proposed. Inspired by the effectiveness of discriminant subspace learning techniques and the fast and efficient Extreme Learning Machine (ELM) algorithm for Single-hidden Layer Feedforward Neural networks training, the ELM algorithm is extended by incorporating discrimination criteria in its optimization process, in order to enhance its classification performance. The proposed Discriminant ELM algorithm is extended, by incorporating proper regularization in its optimization process, in order to exploit information appearing in both labeled and unlabeled action instances. An iterative optimization scheme is proposed in order to address multi-view action classification. The proposed classification algorithms are evaluated on three publicly available action recognition databases providing state-of-the-art performance in all the cases. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:250 / 262
页数:13
相关论文
共 50 条
  • [21] Supervised and semi-supervised twin parametric-margin regularized extreme learning machine
    Ma, Jun
    PATTERN ANALYSIS AND APPLICATIONS, 2020, 23 (04) : 1603 - 1626
  • [22] Fast Multi-View Semi-Supervised Learning With Learned Graph
    Zhang, Bin
    Qiang, Qianyao
    Wang, Fei
    Nie, Feiping
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (01) : 286 - 299
  • [23] Multi-view semi-supervised learning with adaptive graph fusion
    Qiang, Qianyao
    Zhang, Bin
    Nie, Feiping
    Wang, Fei
    NEUROCOMPUTING, 2023, 557
  • [24] SMGCL: Semi-supervised Multi-view Graph Contrastive Learning
    Zhou, Hui
    Gong, Maoguo
    Wang, Shanfeng
    Gao, Yuan
    Zhao, Zhongying
    KNOWLEDGE-BASED SYSTEMS, 2023, 260
  • [25] Visual Tracking via Multi-view Semi-supervised Learning
    Shang, Ziyu
    Lai, Mingzhu
    Ma, Bo
    2018 INTERNATIONAL CONFERENCE ON ALGORITHMS, COMPUTING AND ARTIFICIAL INTELLIGENCE (ACAI 2018), 2018,
  • [26] Semi-Supervised Multi-View Deep Discriminant Representation Learning
    Jia, Xiaodong
    Jing, Xiao-Yuan
    Zhu, Xiaoke
    Chen, Songcan
    Du, Bo
    Cai, Ziyun
    He, Zhenyu
    Yue, Dong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (07) : 2496 - 2509
  • [27] Flexible multi-view semi-supervised learning with unified graph
    Li, Zhongheng
    Qiang, Qianyao
    Zhang, Bin
    Wang, Fei
    Nie, Feiping
    NEURAL NETWORKS, 2021, 142 (142) : 92 - 104
  • [28] Multi-View Semi-Supervised Learning Based Image Annotation
    Sun, Chengjian
    Zhu, Songhao
    Shi, Zhe
    MODERN TECHNOLOGIES IN MATERIALS, MECHANICS AND INTELLIGENT SYSTEMS, 2014, 1049 : 1486 - 1489
  • [29] Multi-View Collaborative Learning for Semi-Supervised Domain Adaptation
    Ngo, Ba Hung
    Kim, Ju Hyun
    Chae, Yeon Jeong
    Cho, Sung In
    IEEE ACCESS, 2021, 9 : 166488 - 166501
  • [30] Embedding Regularizer Learning for Multi-View Semi-Supervised Classification
    Huang, Aiping
    Wang, Zheng
    Zheng, Yannan
    Zhao, Tiesong
    Lin, Chia-Wen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 6997 - 7011