Automated segmentation of the corpus callosum in midsagittal brain magnetic resonance images

被引:10
|
作者
Lee, C
Huh, S
Ketter, TA
Unser, M
机构
[1] Yonsei Univ, Dept Elect Engn, Seodaemoon Gu, Seoul 120749, South Korea
[2] Stanford Univ, Sch Med, Dept Psychiat & Behav Sci, Stanford, CA 94305 USA
[3] Swiss Fed Inst Technol, EPFL, DMT IOA Biomed Imaging Grp, CH-1015 Lausanne, Switzerland
关键词
medical imaging; image segmentation; corpus callosum; magnetic resonance images; region matching; directed window region growing;
D O I
10.1117/1.602449
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a new algorithm to find the corpus callosum automatically from midsagittal brain MR (magnetic resonance) images using the statistical characteristics and shape information of the corpus callosum. We first extract regions satisfying the statistical characteristics (gray level distributions) of the corpus callosum that have relatively high intensity values. Then we try to find a region matching the shape information of the corpus callosum. in order to match the shape information, we propose a new directed window region growing algorithm instead of using conventional contour matching. An innovative feature of the algorithm is that we adaptively relax the statistical requirement until we find a region matching the shape information. After the initial segmentation, a directed border path pruning algorithm is proposed in order to remove some undesired artifacts, especially on the top of the corpus callosum. The proposed algorithm was applied to over 120 images and provided promising results. (C) 2000 Society of Photo-Optical Instrumentation Engineers. [S0091-3286(00)00604-8].
引用
收藏
页码:924 / 935
页数:12
相关论文
共 50 条
  • [21] Corpus callosum morphometry: Comparison of fresh brain, preserved brain and magnetic resonance imaging values
    Gupta, Tulika
    Singh, Balbir
    Kapoor, Kanchan
    Gupta, Madhur
    Kocharl, Suman
    ANATOMICAL SCIENCE INTERNATIONAL, 2008, 83 (03) : 162 - 168
  • [22] Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks
    Reddick, WE
    Glass, JO
    Cook, EN
    Elkin, TD
    Deaton, RJ
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 1997, 16 (06) : 911 - 918
  • [23] Corpus callosum morphometry: Comparison of fresh brain, preserved brain and magnetic resonance imaging values
    Gupta T.
    Singh B.
    Kapoor K.
    Gupta M.
    Kochar S.
    Anatomical Science International, 2008, 83 (3) : 162 - 168
  • [24] Comparison of automated segmentation techniques for magnetic resonance images of the prostate
    Isaksson, Lars Johannes
    Pepa, Matteo
    Summers, Paul
    Zaffaroni, Mattia
    Vincini, Maria Giulia
    Corrao, Giulia
    Mazzola, Giovanni Carlo
    Rotondi, Marco
    Lo Presti, Giuliana
    Raimondi, Sara
    Gandini, Sara
    Volpe, Stefania
    Haron, Zaharudin
    Alessi, Sarah
    Pricolo, Paola
    Mistretta, Francesco Alessandro
    Luzzago, Stefano
    Cattani, Federica
    Musi, Gennaro
    De Cobelli, Ottavio
    Cremonesi, Marta
    Orecchia, Roberto
    Marvaso, Giulia
    Petralia, Giuseppe
    Jereczek-Fossa, Barbara Alicja
    BMC MEDICAL IMAGING, 2023, 23 (01)
  • [25] Comparison of automated segmentation techniques for magnetic resonance images of the prostate
    Lars Johannes Isaksson
    Matteo Pepa
    Paul Summers
    Mattia Zaffaroni
    Maria Giulia Vincini
    Giulia Corrao
    Giovanni Carlo Mazzola
    Marco Rotondi
    Giuliana Lo Presti
    Sara Raimondi
    Sara Gandini
    Stefania Volpe
    Zaharudin Haron
    Sarah Alessi
    Paola Pricolo
    Francesco Alessandro Mistretta
    Stefano Luzzago
    Federica Cattani
    Gennaro Musi
    Ottavio De Cobelli
    Marta Cremonesi
    Roberto Orecchia
    Giulia Marvaso
    Giuseppe Petralia
    Barbara Alicja Jereczek-Fossa
    BMC Medical Imaging, 23
  • [26] Segmentation of Brain Tumor Parts in Magnetic Resonance Images
    Mikulka, Jan
    Burget, Radim
    Riha, Kamil
    Gescheidtova, Eva
    2013 36TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2013, : 565 - 568
  • [27] Comparison of automated segmentation techniques for magnetic resonance images of the prostate
    Pepa, M.
    Isaksson, J. L.
    Zaffaroni, M.
    Summers, P. E.
    Marvaso, G.
    Lo Presti, G.
    Raimondi, S.
    Gandini, S.
    Volpe, S.
    Rojas, D. P.
    Zerini, D.
    Haron, Z.
    Pricolo, P.
    Alessi, S.
    Mistretta, F. A.
    Luzzago, S.
    Cattani, F.
    De Cobelli, O.
    Cassano, E.
    Cremonesi, M.
    Bellomi, M.
    Orecchia, R.
    Petralia, G.
    Jereczek-Fossa, B. A.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S772 - S773
  • [28] Automatic Segmentation of Neonatal Brain Magnetic Resonance Images
    Devi, Chelli N.
    Chandrasekharan, Anupama
    Sundararaman, V. K.
    Alex, Zachariah C.
    2014 INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND SIGNAL PROCESSING (ICCSP), 2014,
  • [29] LEGION - Based segmentation of magnetic resonance images of the brain
    Sivaradje, G
    Saraswady, D
    Dananjayan, P
    IETE JOURNAL OF RESEARCH, 2002, 48 (3-4) : 311 - 315
  • [30] Fast automated segmentation of wrist bones in magnetic resonance images
    Wlodarczyk, Justyna
    Wojciechowski, Wadim
    Czaplicka, Kamila
    Urbanik, Andrzej
    Tabor, Zbislaw
    COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 65 : 44 - 53