Local Block Multilayer Sparse Extreme Learning Machine for Effective Feature Extraction and Classification of Hyperspectral Images

被引:31
|
作者
Cao, Faxian [1 ,2 ]
Yang, Zhijing [1 ]
Ren, Jinchang [2 ]
Chen, Weizhao [1 ]
Han, Guojun [1 ]
Shen, Yuzhen [3 ]
机构
[1] Guangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow G1 1XW, Lanark, Scotland
[3] Dept Guangzhou Urban Planning Technol Dev Serv, Guangzhou 510030, Guangdong, Peoples R China
来源
关键词
Alternative direction method of multipliers (ADMMs); extreme learning machine (ELM); hyperspectral images (HSI); local block multilayer sparse ELM (LBMSELM); loopy belief propagation (LBP); SPECTRAL-SPATIAL CLASSIFICATION; DIMENSION REDUCTION; BELIEF PROPAGATION; REPRESENTATION; REGRESSION; PCA; CNN;
D O I
10.1109/TGRS.2019.2900509
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Although extreme learning machines (ELM) have been successfully applied for the classification of hyperspectral images (HSIs), they still suffer from three main drawbacks. These include: 1) ineffective feature extraction (FE) in HSIs due to a single hidden layer neuron network used; 2) ill-posed problems caused by the random input weights and biases; and 3) lack of spatial information for HSIs classification. To tackle the first problem, we construct a multilayer ELM for effective FE from HSIs. The sparse representation is adopted with the multilayer ELM to tackle the ill-posed problem of ELM, which can be solved by the alternative direction method of multipliers. This has resulted in the proposed multilayer sparse ELM (MSELM) model. Considering that the neighboring pixels are more likely from the same class, a local block extension is introduced for MSELM to extract the local spatial information, leading to the local block MSELM (LBMSELM). The loopy belief propagation is also applied to the proposed MSELM and LBMSELM approaches to further utilize the rich spectral and spatial information for improving the classification. Experimental results show that the proposed methods have outperformed the ELM and other state-of-the-art approaches.
引用
收藏
页码:5580 / 5594
页数:15
相关论文
共 50 条
  • [31] Feature Extraction of Hyperspectral Images With Semisupervised Graph Learning
    Luo, Renbo
    Liao, Wenzhi
    Huang, Xin
    Pi, Youguo
    Philips, Wilfried
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (09) : 4389 - 4399
  • [32] Subspace Feature Analysis of Local Manifold Learning for Hyperspectral Remote Sensing Images Classification
    Ding, Ling
    Tang, Ping
    Li, Hongyi
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (04): : 1987 - 1995
  • [33] Semisupervised Sparse Manifold Discriminative Analysis for Feature Extraction of Hyperspectral Images
    Luo, Fulin
    Huang, Hong
    Ma, Zezhong
    Liu, Jiamin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 6197 - 6211
  • [34] A Kernel-Based Extreme Learning Machine Framework for Classification of Hyperspectral Images Using Active Learning
    Monoj K. Pradhan
    Sonajharia Minz
    Vimal K. Shrivastava
    Journal of the Indian Society of Remote Sensing, 2019, 47 : 1693 - 1705
  • [35] A Kernel-Based Extreme Learning Machine Framework for Classification of Hyperspectral Images Using Active Learning
    Pradhan, Monoj K.
    Minz, Sonajharia
    Shrivastava, Vimal K.
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2019, 47 (10) : 1693 - 1705
  • [36] Learning Sparse CRFs for Feature Selection and Classification of Hyperspectral Imagery
    Zhong, Ping
    Wang, Runsheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (12): : 4186 - 4197
  • [37] Extreme Learning Machine With Enhanced Composite Feature for Spectral-Spatial Hyperspectral Image Classification
    Jiang, Mengying
    Cao, Faxian
    Lu, Yunmeng
    IEEE ACCESS, 2018, 6 : 22645 - 22654
  • [38] Feature Extraction based Classification of Magnetic Resonance Images using Machine learning
    Sharma, Kushaggr
    Sharma, Shivang
    Prajapat, Rahul
    Bhan, Anupama
    Goyal, Ayush
    2019 6TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), 2019, : 127 - 131
  • [39] Feature Extraction of Hyperspectral Images Based on Deep Boltzmann Machine
    Yang, Jiangong
    Guo, Yanhui
    Wang, Xili
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (06) : 1077 - 1081
  • [40] Feature Extraction and Classification of Hyperspectral Images Using Hierarchical Network
    Gao, Yanlong
    Feng, Yan
    Yu, Xumin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (02) : 287 - 291