Diagnosis of Alzheimer's Disease via Multi-Modality 3D Convolutional Neural Network

被引:153
|
作者
Huang, Yechong [1 ]
Xu, Jiahang [1 ]
Zhou, Yuncheng [1 ]
Tong, Tong [2 ]
Zhuang, Xiahai [1 ]
机构
[1] Fudan Univ, Sch Data Sci, Shanghai, Peoples R China
[2] Fujian Prov Key Lab Med Instrument & Pharmaceut T, Fuzhou, Fujian, Peoples R China
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
Alzheimer's disease; multi-modality; image classification; CNN; deep learning; hippocampal; MILD COGNITIVE IMPAIRMENT; CLINICAL-TRIALS; CLASSIFICATION; BIOMARKER;
D O I
10.3389/fnins.2019.00509
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. In the last decade, studies on AD diagnosis has attached great significance to artificial intelligence-based diagnostic algorithms. Among the diverse modalities of imaging data, T1-weighted MR and FDG-PET are widely used for this task. In this paper, we propose a convolutional neural network (CNN) to integrate all the multi-modality information included in both T1-MR and FDG-PET images of the hippocampal area, for the diagnosis of AD. Different from the traditional machine learning algorithms, this method does not require manually extracted features, instead, it utilizes 3D image-processing CNNs to learn features for the diagnosis or prognosis of AD. To test the performance of the proposed network, we trained the classifier with paired T1-MR and FDG-PET images in the ADNI datasets, including 731 cognitively unimpaired (labeled as CN) subjects, 647 subjects with AD, 441 subjects with stable mild cognitive impairment (sMCI) and 326 subjects with progressive mild cognitive impairment (pMCI). We obtained higher accuracies of 90.10% for CN vs. AD task, 87.46% for CN vs. pMCI task, and 76.90% for sMCI vs. pMCI task. The proposed framework yields a state-of-the-art performance. Finally, the results have demonstrated that (1) segmentation is not a prerequisite when using a CNN for the classification, (2) the combination of two modality imaging data generates better results.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease
    Martin Dyrba
    Moritz Hanzig
    Slawek Altenstein
    Sebastian Bader
    Tommaso Ballarini
    Frederic Brosseron
    Katharina Buerger
    Daniel Cantré
    Peter Dechent
    Laura Dobisch
    Emrah Düzel
    Michael Ewers
    Klaus Fliessbach
    Wenzel Glanz
    John-Dylan Haynes
    Michael T. Heneka
    Daniel Janowitz
    Deniz B. Keles
    Ingo Kilimann
    Christoph Laske
    Franziska Maier
    Coraline D. Metzger
    Matthias H. Munk
    Robert Perneczky
    Oliver Peters
    Lukas Preis
    Josef Priller
    Boris Rauchmann
    Nina Roy
    Klaus Scheffler
    Anja Schneider
    Björn H. Schott
    Annika Spottke
    Eike J. Spruth
    Marc-André Weber
    Birgit Ertl-Wagner
    Michael Wagner
    Jens Wiltfang
    Frank Jessen
    Stefan J. Teipel
    Alzheimer's Research & Therapy, 13
  • [22] Attention-based 3D Convolutional Network for Alzheimer's Disease Diagnosis and Biomarkers Exploration
    Jin, Dan
    Xu, Jian
    Zhao, Kun
    Hu, Fangzhou
    Yang, Zhengyi
    Liu, Bing
    Jiang, Tianzi
    Liu, Yong
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1047 - 1051
  • [23] AN EFFICIENT 3D DEEP CONVOLUTIONAL NETWORK FOR ALZHEIMER'S DISEASE DIAGNOSIS USING MR IMAGES
    Backstrom, Karl
    Nazari, Mahmood
    Gu, Irene Yu-Hua
    Jakola, Asgeir Store
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 149 - 153
  • [24] Multi-Modality Sparse Representation for Alzheimer's Disease Classification
    Kwak, Kichang
    Yun, Hyuk Jin
    Park, Gilsoon
    Lee, Jong-Min
    JOURNAL OF ALZHEIMERS DISEASE, 2018, 65 (03) : 807 - 817
  • [25] Multi-Label classification of multi-modality skin lesion via hyper-connected convolutional neural network
    Bi, Lei
    Feng, David Dagan
    Fulham, Michael
    Kim, Jinman
    PATTERN RECOGNITION, 2020, 107
  • [26] A Deep Convolutional Neural Network For Early Diagnosis of Alzheimer's Disease
    Liu, Maximus
    Shalaginov, Mikhail Y.
    Liao, Rory
    Zeng, Tingying Helen
    2022 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES, IECBES, 2022, : 58 - 61
  • [27] Discovering network phenotype between genetic risk factors and disease status via diagnosis-aligned multi-modality regression method in Alzheimer's disease
    Wang, Meiling
    Hao, Xiaoke
    Huang, Jiashuang
    Shao, Wei
    Zhang, Daoqiang
    BIOINFORMATICS, 2019, 35 (11) : 1948 - 1957
  • [28] Ensemble of 3D densely connected convolutional network for diagnosis of mild cognitive impairment and Alzheimer's disease
    Wang, Hongfei
    Shen, Yanyan
    Wang, Shuqiang
    Xiao, Tengfei
    Deng, Liming
    Wang, Xiangyu
    Zhao, Xinyan
    NEUROCOMPUTING, 2019, 333 : 145 - 156
  • [29] Beet seedling and weed recognition based on convolutional neural network and multi-modality images
    Sun, Jun
    Yang, Kaifeng
    He, Xiaofei
    Luo, Yuanqiu
    Wu, Xiaohong
    Shen, Jifeng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (04) : 5239 - 5258
  • [30] Beet seedling and weed recognition based on convolutional neural network and multi-modality images
    Jun Sun
    Kaifeng Yang
    Xiaofei He
    Yuanqiu Luo
    Xiaohong Wu
    Jifeng Shen
    Multimedia Tools and Applications, 2022, 81 : 5239 - 5258