From margins to probabilities in multiclass learning problems

被引:0
|
作者
Passerini, A [1 ]
Pontil, M [1 ]
Frasconi, P [1 ]
机构
[1] Univ Florence, Dept Comp Sci & Syst, I-50121 Florence, Italy
关键词
machine learning; error correcting output codes; support vector machines; statistical learning theory;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study the problem of multiclass classification within the framework of error correcting output codes (ECOC) using margin-based binary classifiers. An important open problem in this context is how to measure the distance between class codewords and the outputs of the classifiers. In this paper we propose a new decoding function that combines the margins through an estimate of their class conditional probabilities. We report experiments using support vector machines as the base binary classifiers, showing the advantage of the proposed decoding function over other functions of the margin commonly used in practice. We also present new theoretical results bounding the leave-one-out error of ECOC of kernel machines, which can be used to tune kernel parameters. An empirical validation indicates that the bound leads to good estimates of kernel parameters and the corresponding classifiers attain high accuracy.
引用
收藏
页码:400 / 404
页数:5
相关论文
共 50 条
  • [21] An approximation for waiting time tail probabilities in multiclass systems
    Jiang, YM
    Tham, CK
    Ko, CC
    IEEE COMMUNICATIONS LETTERS, 2001, 5 (04) : 175 - 177
  • [22] Problems with probabilities
    Metzger, Michael B.
    BUSINESS HORIZONS, 2010, 53 (01) : 15 - 19
  • [23] Efficient Interactive Multiclass Learning from Binary Feedback
    Ngo, Hung
    Luciw, Matthew
    Nagi, Jawas
    Forster, Alexander
    Schmidhuber, Jurgen
    Vien, Ngo Anh
    ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS, 2014, 4 (03)
  • [24] Solving Multiclass Learning Problems via Error-Correcting Output Codes
    Dietterich, Thomas G.
    Bakiri, Ghulum
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1994, 2 : 263 - 286
  • [25] HIERARCHICAL DECOMPOSITION OF MULTICLASS PROBLEMS
    Lorena, Ana C.
    de Carvalho, Andre C. P. L. F.
    NEURAL NETWORK WORLD, 2008, 18 (05) : 407 - 425
  • [26] MULTIOBJECTIVE MULTICLASS SUPPORT VECTOR MACHINES MAXIMIZING GEOMETRIC MARGINS
    Tatsumi, Keiji
    Hayashida, Kenji
    Kawachi, Ryo
    Tanino, Tetsuzo
    PACIFIC JOURNAL OF OPTIMIZATION, 2010, 6 (01): : 115 - 140
  • [27] ASYMPTOTICALLY EFFICIENT ESTIMATION OF PRIOR PROBABILITIES IN MULTICLASS FINITE MIXTURES
    DATTATREYA, GR
    KANAL, LN
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (03) : 482 - 489
  • [28] STUDYING MEDIA AT THE MARGINS: LEARNING FROM THE FIELD
    Rodriguez, Clemencia
    Romero Moreno, Martha C.
    OBETS-REVISTA DE CIENCIAS SOCIALES, 2016, 11 (01): : 331 - 350
  • [29] LEARNING ACTION PROBABILITIES FROM DELAYED REINFORCEMENT
    AHSON, SI
    SRINIVAS, R
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1993, 24 (12) : 2415 - 2421
  • [30] Sensitivity of Modern Deep Learning Neural Networks to Unbalanced Datasets in Multiclass Classification Problems
    Barulina, Marina
    Okunkov, Sergey
    Ulitin, Ivan
    Sanbaev, Askhat
    APPLIED SCIENCES-BASEL, 2023, 13 (15):