Hypothesis diversity in ensemble classification

被引:0
|
作者
Saitta, Lorenza [1 ]
机构
[1] Univ Piemonte Orientale, Dipartimento Informat, Alessandria, Italy
来源
FOUNDATIONS OF INTELLIGENT SYSTEMS, PROCEEDINGS | 2006年 / 4203卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper discusses the issue of hypothesis diversity in ensemble classifiers. The measures of diversity previously proposed in the literature are analyzed inside a unifying framework based on Monte Carlo stochastic algorithms. The paper shows that no measure is useful to predict ensemble performance, because all of them have only a very loose relation with the expected accuracy of the classifier.
引用
收藏
页码:662 / 670
页数:9
相关论文
共 50 条
  • [41] Ensemble learning with local diversity
    Nanculef, Ricardo
    Valle, Carlos
    Allende, Hector
    Moraga, Claudio
    ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 1, 2006, 4131 : 264 - 273
  • [42] Ensemble Allosteric Model for the Modified Wobble Hypothesis
    Sarkar, Aditya K.
    Sarzynska, Joanna
    Lahiri, Ansuman
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (15): : 6337 - 6343
  • [43] Generic Subclass Ensemble: A Novel Approach to Ensemble Classification
    Bagheri, Mohammad Ali
    Gao, Qigang
    Escalera, Sergio
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 1254 - 1259
  • [44] The intermediate, disturbance hypothesis - species diversity or functional diversity?
    Weithoff, G
    Walz, N
    Gaedke, U
    JOURNAL OF PLANKTON RESEARCH, 2001, 23 (10) : 1147 - 1155
  • [45] Research on Structure Diversity Measurement of Base Classifier Based on Data Sample Classification Coding in Ensemble Learning
    Zhou, Gang
    Guo, Fuliang
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2019, 124 : 145 - 146
  • [46] Multi-type classification of lung nodules based on CT radiomics and ensemble learning for diversity weighting
    Tang, Guozhi
    Du, Lingyan
    Ling, Shihai
    Che, Yue
    Chen, Xin
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (12) : 8942 - 8965
  • [47] Maximizing the Diversity of Ensemble Random Forests for Tree Genera Classification Using High Density LiDAR Data
    Ko, Connie
    Sohn, Gunho
    Remmel, Tarmo K.
    Miller, John R.
    REMOTE SENSING, 2016, 8 (08)
  • [48] An ensemble framework for patent classification
    Kamateri, Eleni
    Salampasis, Michail
    Diamantaras, Konstantinos
    WORLD PATENT INFORMATION, 2023, 75
  • [49] Blind Multiclass Ensemble Classification
    Traganitis, Panagiotis A.
    Pages-Zamora, Alba
    Giannakis, Georgios B.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (18) : 4737 - 4752
  • [50] Hybrid ensemble approach for classification
    Brijesh Verma
    Syed Zahid Hassan
    Applied Intelligence, 2011, 34 : 258 - 278