Thermodynamics of N-dimensional quantum walks

被引:12
|
作者
Romanelli, Alejandro [1 ]
Donangelo, Raul [1 ]
Portugal, Renato [2 ]
Marquezino, Franklin de Lima [3 ]
机构
[1] Univ Republica, Fac Ingn, Inst Fis, Montevideo, Uruguay
[2] Lab Nacl Computacao Cient, BR-25651075 Rio De Janeiro, Brazil
[3] Univ Fed Rio de Janeiro, BR-21941972 Rio De Janeiro, Brazil
关键词
ENTANGLEMENT; COINS;
D O I
10.1103/PhysRevA.90.022329
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The entanglement between the position and the coin state of an N-dimensional quantum walker is shown to lead to a thermodynamic theory. The entropy, in this thermodynamics, is associated with the reduced density operator for the evolution of chirality, taking a partial trace over positions. From the asymptotic reduced density matrix it is possible to define thermodynamic quantities, such as the asymptotic entanglement entropy, temperature, and Helmholz free energy. We study in detail the case of a two-dimensional quantum walk, in the case of two initial conditions: a nonseparable coin-position initial state and a separable one. The resulting entanglement temperature is presented as a function of the parameters of the system and those of the initial conditions.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] The Skew Product on n-Dimensional Cell with Transitive but not Totally Transitive n-Dimensional Attractor
    Fil'chenkov, A. S.
    RUSSIAN MATHEMATICS, 2016, 60 (06) : 79 - 87
  • [42] n-Dimensional (S, N)-implications
    Zanotelli, Rosana
    Reiser, Renata
    Bedregal, Benjamin
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2020, 126 : 1 - 26
  • [43] ON INVARIANTS OF IMMERSIONS OF AN n-DIMENSIONAL MANIFOLD IN AN n-DIMENSIONAL PSEUDO-EUCLIDEAN SPACE
    Khadjiev, Djavvat
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2010, 17 : 49 - 70
  • [44] PACKING n-DIMENSIONAL PARALLELEPIPEDS WITH THE FEASIBILITY OF CHANGING THEIR ORTHOGONAL ORIENTATION IN AN n-DIMENSIONAL PARALLELEPIPED
    Grebennik, I. V.
    Pankratov, A. V.
    Chugay, A. M.
    Baranova, A. V.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2010, 46 (05) : 793 - 802
  • [45] On Invariants of Immersions of an n-Dimensional Manifold in an n-Dimensional Pseudo-Euclidean Space
    Djavvat Khadjiev
    Journal of Nonlinear Mathematical Physics, 2010, 17 : 49 - 70
  • [46] On n-Dimensional Steinberg Symbols
    Pablos Romo, Fernando
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (06): : 1387 - 1405
  • [47] N-DIMENSIONAL GEOMETRY - REPLY
    SAVILLE, DJ
    WOOD, GR
    AMERICAN STATISTICIAN, 1987, 41 (03): : 242 - 243
  • [48] Collineations of n-dimensional space
    Cohn-Vossen, Stephan
    MATHEMATISCHE ANNALEN, 1938, 115 : 80 - 86
  • [49] N-DIMENSIONAL TRANSPORT PROBLEM
    SVABOVA, M
    MARUNOVA, E
    EKONOMICKO-MATEMATICKY OBZOR, 1967, 3 (03): : 308 - 323
  • [50] The n-dimensional Peano Curve
    de Freitas, Jaquim E.
    de Lima, Ronaldo F.
    dos Santos, Daniel T.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (02): : 678 - 688