Scalable information inequalities for uncertainty quantification

被引:14
|
作者
Katsoulakis, Markos A. [1 ]
Rey-Bellet, Luc [1 ]
Wang, Jie [1 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
Kullback Leibler divergence; Information metrics; Uncertainty quantification; Statistical mechanics; High dimensional systems; Nonlinear response; Phase diagrams; SENSITIVITY-ANALYSIS; EINSTEIN RELATION; DIVERGENCE; PARTICLE; SYSTEMS;
D O I
10.1016/j.jcp.2017.02.020
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we demonstrate the only available scalable information bounds for quantities of interest of high dimensional probabilistic models. Scalability of inequalities allows us to (a) obtain uncertainty quantification bounds for quantities of interest in the large degree of freedom limit and/or at long time regimes; (b) assess the impact of large model perturbations as in nonlinear response regimes in statistical mechanics; (c) address model form uncertainty, i.e. compare different extended models and corresponding quantities of interest. We demonstrate some of these properties by deriving robust uncertainty quantification bounds for phase diagrams in statistical mechanics models. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:513 / 545
页数:33
相关论文
共 50 条
  • [21] Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
    Thaler, Stephan
    Doehner, Gregor
    Zavadlav, Julija
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (14) : 4520 - 4532
  • [22] Uncertainty Quantification for Markov Processes via Variational Principles and Functional Inequalities
    Birrell, Jeremiah
    Rey-Bellet, Luc
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (02): : 539 - 572
  • [23] Parameter estimation and uncertainty quantification using information geometry
    Sharp, Jesse A.
    Browning, Alexander P.
    Burrage, Kevin
    Simpson, Matthew J.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2022, 19 (189)
  • [24] Quantification of uncertainty information in remaining useful life estimation
    Zhao, Changdong
    Xiang, Shihu
    Hao, Songhua
    Niu, Feng
    Li, Kui
    APPLIED MATHEMATICAL MODELLING, 2025, 142
  • [25] Uncertainty quantification and reduction using Jacobian and Hessian information
    Sanchez, Josefina
    Otto, Kevin
    DESIGN SCIENCE, 2021, 7
  • [26] Uncertainty representation, quantification and evaluation for data and information fusion
    de Villiers, J. P.
    Laskey, K.
    Jousselme, A. -L.
    Blasch, E.
    de Waal, A.
    Pavlin, G.
    Costa, P.
    2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 50 - 57
  • [27] Extrapolation in risk assessment: Improving the quantification of uncertainty, and improving information to reduce the uncertainty
    Goodman, D
    HUMAN AND ECOLOGICAL RISK ASSESSMENT, 2002, 8 (01): : 177 - 192
  • [28] Korali: Efficient and scalable software framework for Bayesian uncertainty quantification and stochastic optimization
    Martin, Sergio M.
    Waelchli, Daniel
    Arampatzis, Georgios
    Economides, Athena E.
    Karnakov, Petr
    Koumoutsakos, Petros
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 389
  • [29] Scalable Bayesian Uncertainty Quantification in Imaging Inverse Problems via Convex Optimization
    Repetti, Audrey
    Pereyra, Marcelo
    Wiaux, Yves
    SIAM JOURNAL ON IMAGING SCIENCES, 2019, 12 (01): : 87 - 118
  • [30] Scalable Information Gain variant on Spark Cluster for Rapid Quantification of Microarray
    Ray, Ransingh Biswajit
    Kumar, Mukesh
    Tirkey, Anand
    Rath, Santanu Kumar
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND COMMUNICATIONS, 2016, 93 : 292 - 298