Neutron Guide System for Ultracold and Cold Neutrons at the WWR-M Reactor

被引:1
|
作者
Serebrov, A. P. [1 ]
Lyamkin, V. A. [1 ]
Pusenkov, V. M. [1 ]
Onegin, M. S. [1 ]
Fomin, A. K. [1 ]
Samodurov, O. Yu. [1 ]
Oprev, A. T. [1 ]
Ilatovskii, V. A. [1 ]
Zhuravlev, Yu. N. [1 ]
Shchebetov, A. F. [1 ]
Syromyatnikov, V. G. [1 ]
Gordeev, G. P. [1 ]
Aksel'rod, L. A. [1 ]
Zabenkin, V. N. [1 ]
Golosovskii, I. V. [1 ]
Smirnov, O. P. [1 ]
Lebedev, V. T. [1 ]
Chernenkov, Yu. P. [1 ]
Runov, V. V. [1 ]
机构
[1] Natl Res Ctr Kurchatov Inst, Konstantinov Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Oblas, Russia
基金
俄罗斯科学基金会;
关键词
D O I
10.1134/S1063784219050219
中图分类号
O59 [应用物理学];
学科分类号
摘要
The results of calculation of fluxes of ultracold (UCNs), very cold, and cold neutrons at the output of neutron guides of the UCN source with superfluid helium at the WWR-M reactor are presented. UCN density (35L) = 1.3 x 10(4) n/cm(3) in the trap of the electric dipole moment (EDM) spectrometer was obtained by optimizing source parameters. This UCN density in the EDM spectrometer is two orders of magnitude higher than the UCN density at the output of the available UCN sources. The flux density of cold neutrons with a wavelength of 2-20 angstrom at the output of a neutron guide with a cross section of 30 x 200 mm(2) should be as high as 1.1 x 10(8) n/(cm(2) s), while the flux density of very cold neutrons (50-100 angstrom) at the output of the same neutron guide should be 2.3 x 10(5) n/(cm(2) s). An extensive program of fundamental and applied physical research was mapped out for this source.
引用
收藏
页码:737 / 744
页数:8
相关论文
共 50 条
  • [31] UCN source with superfluid helium at WWR-M reactor
    Serebrov, A. P.
    Lyamkin, V. A.
    Fomin, A. K.
    Prudnikov, D. V.
    Samodurov, O. Yu
    Kanin, A. S.
    INTERNATIONAL CONFERENCE ON PARTICLE PHYSICS AND ASTROPHYSICS, 2017, 798
  • [32] Calculation of the neutron temperature in the WWR-M reactor channel by the maple software package
    Zinov'ev V.G.
    Bulletin of the Russian Academy of Sciences: Physics, 2009, 73 (04) : 517 - 519
  • [33] ASSESSMENT OF THE DOSE LOAD DURING THE DISMANTLING OF THE WWR-M REACTOR
    Lobach, Yu. M.
    Lobach, S. Yu.
    Luferenko, E. D.
    Shevel, V. M.
    NUCLEAR PHYSICS AND ATOMIC ENERGY, 2022, 23 (04): : 234 - 244
  • [34] PRELIMINARY SAFETY ANALYSIS AT THE DECOMMISSIONING OF THE WWR-M RESEARCH REACTOR
    Lobach, Yu M.
    Lobach, S. Yu
    Shevel, V. M.
    NUCLEAR PHYSICS AND ATOMIC ENERGY, 2022, 23 (02): : 107 - 115
  • [35] PRINCIPAL PROVISIONS OF THE DECOMMISSIONING CONCEPT FOR THE WWR-M RESEARCH REACTOR
    Lobach, Yu. M.
    Luferenko, E. D.
    V. Lysenko, M.
    Shevel, V. M.
    NUCLEAR PHYSICS AND ATOMIC ENERGY, 2021, 22 (04): : 348 - 357
  • [36] RADIATION PROTECTION TASKS ON THE KIEV RESEARCH REACTOR WWR-M
    Lobach, Yuri N.
    Shevel, Valery N.
    NUCLEAR TECHNOLOGY & RADIATION PROTECTION, 2009, 24 (02): : 145 - 151
  • [37] WWR-M reactor neutron spectrum study at 4-18 MeV by the differential recoil proton method
    Kravchenko, SA
    Vlasov, MF
    Gritzay, OO
    INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, PTS 1 AND 2, 2005, 769 : 762 - 765
  • [38] Experiment on search for neutron-antineutron oscillations using a projected UCN source at the WWR-M reactor
    Fomin, A. K.
    Serebrov, A. P.
    Zherebtsov, O. M.
    Leonova, E. N.
    Chaikovskii, M. E.
    INTERNATIONAL CONFERENCE ON PARTICLE PHYSICS AND ASTROPHYSICS, 2017, 798
  • [39] NEUTRON NOISE DIAGNOSTICS IN A WWR-M TYPE RESEARCH REACTOR AND ITS INFLUENCE ON THE ERRORS OF PHYSICAL EXPERIMENTS
    GARUSOV, EA
    KONOPLEV, KA
    LIVSHITS, PM
    PETROV, YV
    SEMENOV, AY
    FILIMONOV, YI
    KERNENERGIE, 1983, 26 (02): : 68 - 74
  • [40] Realization of the passive safety concept in designing of WWR-M reactor tank
    Alehin, AI
    Konoplev, KA
    Pikulik, RG
    Potapov, IA
    ANNUAL MEETING ON NUCLEAR TECHNOLOGY '96, 1996, : 646 - 649