Connectivity by geodesics on globally hyperbolic spacetimes with a lightlike Killing vector field

被引:6
|
作者
Bartolo, Rossella [1 ]
Candela, Anna Maria [2 ]
Luis Flores, Jose [3 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70125 Bari, Italy
[2] Univ Bari Aldo Moro, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
[3] Univ Malaga, Fac Ciencias, Dept Algebra Geometria & Topol, Campus Teatinos, E-29071 Malaga, Spain
关键词
STATIONARY; CONNECTEDNESS; CAUSALITY; EXISTENCE;
D O I
10.4171/RMI/926
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Taking a globally hyperbolic spacetime endowed with a complete lightlike Killing vector field and a complete Cauchy hypersurface, we characterize the points which can be connected by geodesics. A straightforward consequence is the geodesic connectedness of globally hyperbolic generalized plane waves with a complete Cauchy hypersurface.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [31] Compact maximal hypersurfaces in globally hyperbolic spacetimes
    Aledo, Juan A.
    Rubio, Rafael M.
    Salamanca, Juan J.
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (01)
  • [32] Causal Isomorphism Between Globally Hyperbolic Spacetimes
    Masoud Bahrami Seif Abad
    Mehdi Sharifzadeh
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 3059 - 3075
  • [33] Global wave parametrices on globally hyperbolic spacetimes
    Capoferri, Matteo
    Dappiaggi, Claudio
    Drago, Nicolo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 490 (02)
  • [34] Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field
    José Luis Flores
    Miguel Ángel Javaloyes
    Paolo Piccione
    Mathematische Zeitschrift, 2011, 267 : 221 - 233
  • [35] Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field
    Luis Flores, Jose
    Angel Javaloyes, Miguel
    Piccione, Paolo
    MATHEMATISCHE ZEITSCHRIFT, 2011, 267 (1-2) : 221 - 233
  • [36] VACUUM SPACETIMES WITH A SPACELIKE KILLING VECTOR
    PHAN, D
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1993, 47 (03) : 525 - 527
  • [37] ALGEBRAIC APPROACH TO QUANTUM-FIELD THEORY ON NON-GLOBALLY-HYPERBOLIC SPACETIMES
    YURTSEVER, U
    CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (04) : 999 - 1012
  • [38] GLOBALLY HYPERBOLIC SPACETIMES WHICH ARE TIMELIKE CAUCHY COMPLETE
    BEEM, JK
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A219 - A219
  • [39] Structure of globally hyperbolic spacetimes-with-timelike-boundary
    Ake, Luis
    Flores, Jose L.
    Sanchez, Miguel
    REVISTA MATEMATICA IBEROAMERICANA, 2021, 37 (01) : 45 - 94
  • [40] Aspects of noncommutative lorentzian geometry for globally hyperbolic spacetimes
    Moretti, V
    REVIEWS IN MATHEMATICAL PHYSICS, 2003, 15 (10) : 1171 - 1217