Radial Basis Function Neural Network Method of Determining Functional Relationships for Quality Function Deployment

被引:0
|
作者
Li Xin [1 ]
Huang Lu-cheng [1 ]
机构
[1] Beijing Univ Technol, Sch Econ & Management, Beijing 100124, Peoples R China
关键词
functional relationships; house of quality; quality function deployment; radial basis function; ENGINEERING CHARACTERISTICS; PRODUCT DEVELOPMENT; QFD;
D O I
10.1109/ICMSE.2009.5317507
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Quality Function Deployment (QFD) is a systematic approach that captures customer requirements and translates them, through house of quality (HOQ), into engineering characteristics of product. As the functional relationships between customer requirements and engineering characteristics in QFD are uncertain, unclear and fuzzy, Radial Basis Function (RBF) to determine the functional relationships for QFD is presented, and a QFD functional relationships model based on RBF is proposed. According to RBF neural network can realize the nonlinear mapping space from the input space to the output, and can obtain the optimal relationships pattern of the input and output, the customer requirements and engineering characteristics in QFD constituted the input and output of the RBF Neural Network respectively, the optimal relationships are constructed through the neural network training. A case study of natural lighting products development is provided to illustrate the application of the presented method.
引用
收藏
页码:176 / 182
页数:7
相关论文
共 50 条
  • [21] Analysis of algorithms for radial basis function neural network
    Stastny, Jiri
    Skorpil, Vladislav
    PERSONAL WIRELESS COMMUNICATIONS, 2007, 245 : 54 - +
  • [22] Coordinate transformation by radial basis function neural network
    Gullu, Mevlut
    SCIENTIFIC RESEARCH AND ESSAYS, 2010, 5 (20): : 3141 - 3146
  • [23] A Novel Reformulated Radial Basis Function Neural Network
    Yin, Jianchuan
    Hu, Jiangqiang
    Bu, Renxiang
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 2997 - 3001
  • [24] Radial basis function neural network for a traffic model
    Luo, Zanwen
    Wu, Zhijian
    Han, Zengjin
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2001, 41 (09): : 106 - 110
  • [25] Chaotic Neural Network with Radial Basis Function Disturbance
    Xu, Nan
    Xu, Yao-Qun
    ELEVENTH WUHAN INTERNATIONAL CONFERENCE ON E-BUSINESS, 2012, : 668 - +
  • [26] Research on motion compensation method based on neural network of radial basis function
    Zuo Yunbo
    仪器仪表学报, 2014, 35(S2) (S2) : 215 - 218
  • [27] Research on Intention Recognition Method Based on Radial Basis Function Neural Network
    Yan, Han
    Ming, Han
    Yang, Ruoxi
    Li, Tiejun
    INFORMATION TECHNOLOGY AND CONTROL, 2019, 48 (04): : 637 - 647
  • [28] An obsolescence forecasting method based on improved radial basis function neural network
    Liu, Yan
    Zhao, Min
    AIN SHAMS ENGINEERING JOURNAL, 2022, 13 (06)
  • [29] Beam Pattern Optimization Method Based on Radial Basis Function Neural Network
    Ren Xiaoying
    Wang Yingmin
    Wang Qi
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (12) : 3695 - 3702
  • [30] Digital Design of Radial Basis Function Neural Network and Recurrent Neural Network
    Sahithya, P.
    Arulmozhi, M.
    Praveen, Nandini
    2019 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET 2019): ADVANCING WIRELESS AND MOBILE COMMUNICATIONS TECHNOLOGIES FOR 2020 INFORMATION SOCIETY, 2019, : 393 - 397