Using Machine Learning and Feature Selection for Alfalfa Yield Prediction

被引:31
|
作者
Whitmire, Christopher D. D. [1 ]
Vance, Jonathan M. M. [2 ]
Rasheed, Hend K. K.
Missaoui, Ali [3 ]
Rasheed, Khaled M. M. [1 ,2 ]
Maier, Frederick W. W. [1 ]
机构
[1] Univ Georgia, Inst Artificial Intelligence, 515 Boyd Grad Studies,200 DW Brooks Dr, Athens, GA 30602 USA
[2] Univ Georgia, Dept Comp Sci, 415 Boyd Grad Studies,200 D W Brooks Dr, Athens, GA 30602 USA
[3] Univ Georgia, Inst Plant Breeding Genet & Genom, Dept Crop & Soil Sci, 4317 Miller Plant Sci, Athens, GA 30602 USA
关键词
alfalfa; cross validation; feature selection; machine learning; regression; yield prediction;
D O I
10.3390/ai2010006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predicting alfalfa biomass and crop yield for livestock feed is important to the daily lives of virtually everyone, and many features of data from this domain combined with corresponding weather data can be used to train machine learning models for yield prediction. In this work, we used yield data of different alfalfa varieties from multiple years in Kentucky and Georgia, and we compared the impact of different feature selection methods on machine learning (ML) models trained to predict alfalfa yield. Linear regression, regression trees, support vector machines, neural networks, Bayesian regression, and nearest neighbors were all developed with cross validation. The features used included weather data, historical yield data, and the sown date. The feature selection methods that were compared included a correlation-based method, the ReliefF method, and a wrapper method. We found that the best method was the correlation-based method, and the feature set it found consisted of the Julian day of the harvest, the number of days between the sown and harvest dates, cumulative solar radiation since the previous harvest, and cumulative rainfall since the previous harvest. Using these features, the k-nearest neighbor and random forest methods achieved an average R value over 0.95, and average mean absolute error less than 200 lbs./acre. Our top R-2 of 0.90 beats a previous work's best R-2 of 0.87. Our primary contribution is the demonstration that ML, with feature selection, shows promise in predicting crop yields even on simple datasets with a handful of features, and that reporting accuracies in R and R-2 offers an intuitive way to compare results among various crops.
引用
收藏
页码:71 / 88
页数:18
相关论文
共 50 条
  • [41] Compositional Feature Selection and Its Effects on Bandgap Prediction by Machine Learning
    Nam, Chunghee
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2023, 33 (04): : 164 - 174
  • [42] Feature Selection Based Machine Learning to Improve Prediction of Parkinson Disease
    Nahar, Nazmun
    Ara, Ferdous
    Neloy, Md Arif Istiek
    Biswas, Anik
    Hossain, Mohammad Shahadat
    Andersson, Karl
    BRAIN INFORMATICS, BI 2021, 2021, 12960 : 496 - 508
  • [43] Prediction of heart disease by classifying with feature selection and machine learning methods
    Gazeloglu, Cengiz
    PROGRESS IN NUTRITION, 2020, 22 (02): : 660 - 670
  • [44] Prediction of Teff Yield Using a Machine Learning Approach
    Mulatu, Adugna Necho
    Tamir, Eneyachew
    ARTIFICIAL INTELLIGENCE AND DIGITALIZATION FOR SUSTAINABLE DEVELOPMENT, ICAST 2022, 2023, 455 : 159 - 176
  • [45] Crop yield prediction using machine learning techniques
    Iniyan, S.
    Varma, V. Akhil
    Naidu, Ch Teja
    ADVANCES IN ENGINEERING SOFTWARE, 2023, 175
  • [46] Crop Yield Prediction Using Machine Learning Algorithms
    Nigam, Aruvansh
    Garg, Saksham
    Agrawal, Archit
    Agrawal, Parul
    2019 FIFTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP 2019), 2019, : 125 - 130
  • [47] Crop Yield Prediction using Machine Learning Techniques
    Medar, Ramesh
    Rajpurohit, Vijay S.
    Shweta
    2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,
  • [48] ACS mortality prediction in Asian in-hospital patients with deep learning using machine learning feature selection
    Kasim, S.
    Malek, S.
    Ibrahim, K. S.
    Hiew, J. H.
    Aziz, M. F.
    EUROPEAN HEART JOURNAL, 2021, 42 : 3069 - 3069
  • [49] Osteoporosis Detection Using Machine Learning Techniques and Feature Selection
    Iliou, Theodoros
    Anagnostopoulos, Christos-Nikolaos
    Anastassopoulos, George
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2014, 23 (05)
  • [50] Feature Selection Stability and Accuracy of Prediction Models for Genomic Prediction of Residual Feed Intake in Pigs Using Machine Learning
    Piles, Miriam
    Bergsma, Rob
    Gianola, Daniel
    Gilbert, Helene
    Tusell, Llibertat
    FRONTIERS IN GENETICS, 2021, 12