Applying polynomial filtering to mass preconditioned Hybrid Monte Carlo

被引:3
|
作者
Haar, Taylor [1 ]
Kamleh, Waseem [1 ]
Zanotti, James [1 ]
Nakamura, Yoshifumi [2 ]
机构
[1] Univ Adelaide, Dept Phys, CSSM, Adelaide, SA 5005, Australia
[2] RIKEN, Adv Inst Computat Sci, Kobe, Hyogo 6500047, Japan
基金
澳大利亚研究理事会;
关键词
Hybrid Monte Carlo algorithm; Multiple time scale integration; MOLECULAR-DYNAMICS; ALGORITHM; SIMULATIONS; QUANTUM; LATTICE;
D O I
10.1016/j.cpc.2017.02.020
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The use of mass preconditioning or Hasenbusch filtering in modern Hybrid Monte Carlo simulations is common. At light quark masses, multiple filters (three or more) are typically used to reduce the cost of generating dynamical gauge fields; however, the task of tuning a large number of Hasenbusch mass terms is non-trivial. The use of short polynomial approximations to the inverse has been shown to provide an effective UV filter for HMC simulations. In this work we investigate the application of polynomial filtering to the mass preconditioned Hybrid Monte Carlo algorithm as a means of introducing many time scales into the molecular dynamics integration with a simplified parameter tuning process. A generalized multi-scale integration scheme that permits arbitrary step-sizes and can be applied to Omelyan-style integrators is also introduced. We find that polynomial-filtered mass-preconditioning (PF-MP) performs as well as or better than standard mass preconditioning, with significantly less fine tuning required. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 127
页数:15
相关论文
共 50 条
  • [31] Compressible generalized hybrid Monte Carlo
    Fang, Youhan
    Sanz-Serna, J. M.
    Skeel, Robert D.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (17):
  • [32] Hybrid Monte Carlo without pseudofermions
    Liu, KF
    Dong, SJ
    Thron, C
    NUCLEAR PHYSICS B, 1997, : 980 - 982
  • [33] Hybrid algorithms in quantum Monte Carlo
    Kim, Jeongnim
    Esler, Kenneth P.
    McMinis, Jeremy
    Morales, Miguel A.
    Clark, Bryan K.
    Shulenburger, Luke
    Ceperley, David M.
    IUPAP C20 CONFERENCE ON COMPUTATIONAL PHYSICS (CCP 2011), 2012, 402
  • [34] Equation of motion in hybrid Monte Carlo
    Luo, XQ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1998, 29 (03) : 447 - 452
  • [35] The Ising model with Hybrid Monte Carlo
    Ostmeyer, Johann
    Berkowitz, Evan
    Luu, Thomas
    Petschlies, Marcus
    Pittler, Ferenc
    COMPUTER PHYSICS COMMUNICATIONS, 2021, 265
  • [36] HYBRID DETERMINISTIC/MONTE CARLO NEUTRONICS
    Willert, Jeffrey
    Kelley, C. T.
    Knoll, D. A.
    Park, H.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (05): : S62 - S83
  • [37] Hybrid Monte Carlo on Hilbert spaces
    Beskos, A.
    Pinski, F. J.
    Sanz-Serna, J. M.
    Stuart, A. M.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (10) : 2201 - 2230
  • [38] Accelerating the hybrid Monte Carlo algorithm
    Khan, AA
    Bakeyev, T
    Göckeler, M
    Horsley, R
    Pleiter, D
    Rakow, P
    Schäfer, A
    Schierholz, G
    Stüben, H
    PHYSICS LETTERS B, 2003, 564 (3-4) : 235 - 240
  • [39] Monte Carlo methods for a special nonlinear filtering problem
    Stepanov, OA
    Ivanov, VM
    Korenevski, ML
    CONTROL APPLICATIONS OF OPTIMIZATION 2000, VOLS 1 AND 2, 2000, : 347 - 352
  • [40] A Machine Learning Approach for Filtering Monte Carlo Noise
    Kalantari, Nima Khademi
    Bako, Steve
    Sen, Pradeep
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (04):