Reaction-diffusion in irregular domains

被引:11
|
作者
Abdulla, UG
机构
[1] Baku State Univ, Fac Appl Math & Cybernet, Baku, Azerbaijan
[2] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
关键词
Cauchy-Dirichlet problem; Dirichlet problem; nonlinear degenerate parabolic equation; singular parabolic equation; reaction-diffusion; irregular domains; boundary regularity;
D O I
10.1006/jdeq.2000.3761
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy-Dirichlet and Dirichlet problems for the nonlinear parabolic equation u(t) - a(u(m))(xx) + bu(beta) = 0, where a > 0, b is an element of R(1), m > 0, and beta > 0. The problems are considered in noncylindrical domains with nonsmooth boundaries. Existence, uniqueness, and comparison results are established. Constructed solutions are continuous up to the nonsmooth boundary if at each interior point the left modulus of the lower (respectively upper) semicontinuity of the left (respectively right) boundary curve satisfies an upper The (respectively lower) Holder condition neat zero with Holder exponent v > 1/2. value 1/2 is critical as in the classical theory of the heat equation u(t) = u(xx). (C) 2000 Academic Press.
引用
收藏
页码:321 / 354
页数:34
相关论文
共 50 条
  • [21] Numerical simulation of reaction-diffusion equations on spherical domains
    Amdjadi, Faridon
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (08) : 1592 - 1595
  • [22] On the qualitative theory of a reaction-diffusion system on bounded domains
    Okoya, S. S.
    Indian Journal of Pure and Applied Mathematics, 28 (02):
  • [23] Wave solutions to reaction-diffusion systems in perforated domains
    Heinze, S
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2001, 20 (03): : 661 - 676
  • [24] On the Kneser property for reaction-diffusion systems on unbounded domains
    Morillas, Francisco
    Valero, Jose
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (18) : 3029 - 3040
  • [25] ZERO-DIFFUSION DOMAINS IN REACTION-DIFFUSION MORPHOGENETIC AND EPIDEMIOLOGIC PROCESSES
    Demongeot, Jacques
    Gaudart, Jean
    Lontos, Athanasios
    Mintsa, Julie
    Promayon, Emmanuel
    Rachdi, Mustapha
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (02):
  • [26] Reaction-diffusion and reaction-subdiffusion equations on arbitrarily evolving domains
    Abad, E.
    Angstmann, C. N.
    Henry, B. I.
    McGann, A. V.
    Le Vot, F.
    Yuste, S. B.
    PHYSICAL REVIEW E, 2020, 102 (03)
  • [27] Global dynamics of delayed reaction-diffusion equations in unbounded domains
    Yi, Taishan
    Chen, Yuming
    Wu, Jianhong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (05): : 793 - 812
  • [28] Random attractors for stochastic reaction-diffusion equations on unbounded domains
    Bates, Peter W.
    Lu, Kening
    Wang, Bixiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (02) : 845 - 869
  • [29] Extremal equilibria for reaction-diffusion equations in bounded domains and applications
    Rodriguez-Bernal, Anibal
    Vidal-Lopez, Alejandro
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (12) : 2983 - 3030
  • [30] Pullback attractors for nonautonomous reaction-diffusion equations in unbounded domains
    Wang, Yonghai
    Wang, Lingzhi
    Zhao, Wenjing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (01) : 330 - 347