Direct characterization of the evanescent field in objective-type total internal reflection fluorescence microscopy

被引:16
|
作者
Niederauer, Christian [1 ]
Blumhardt, Philipp [1 ]
Muecksch, Jonas [1 ]
Heymann, Michael [1 ]
Lambacher, Armin [1 ]
Schwille, Petra [1 ]
机构
[1] Max Planck Inst Biochem, Klopferspitz 18, D-82152 Martinsried, Germany
来源
OPTICS EXPRESS | 2018年 / 26卷 / 16期
关键词
SINGLE SECRETORY GRANULES; CELL-SURFACE TOPOGRAPHY; LIVE CHROMAFFIN CELLS; CORRELATION SPECTROSCOPY; 3-DIMENSIONAL LOCALIZATION; PARTICLE TRACKING; TIRF MICROSCOPY; SUPERRESOLUTION; CALIBRATION; DYNAMICS;
D O I
10.1364/OE.26.020492
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Total internal reflection fluorescence (TIRF) microscopy is a commonly used method for studying fluorescently labeled molecules in close proximity to a surface. Usually, the TIRF axial excitation profile is assumed to be single-exponential with a characteristic penetration depth, governed by the incident angle of the excitation laser beam towards the optical axis. However, in practice, the excitation profile does not only comprise the theoretically predicted single-exponential evanescent field, but also an additional non-evanescent contribution, supposedly caused by scattering within the optical path or optical aberrations. We developed a calibration slide to directly characterize the TIRF excitation field. Our slide features ten height steps ranging from 25 to 550 nanometers, fabricated from a polymer with a refractive index matching that of water. Fluorophores in aqueous solution above the polymer step layers sample the excitation profile at different heights. The obtained excitation profiles confirm the theoretically predicted exponential decay over increasing step heights as well as the presence of a non-evanescent contribution. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:20492 / 20506
页数:15
相关论文
共 50 条
  • [21] Direct Quantification of Single-Molecules of MicroRNA by Total Internal Reflection Fluorescence Microscopy
    Chan, Ho-Man
    Chan, Lai-Sheung
    Wong, Ricky Ngok-Shun
    Li, Hung-Wing
    ANALYTICAL CHEMISTRY, 2010, 82 (16) : 6911 - 6918
  • [22] APPLICATIONS OF TOTAL INTERNAL-REFLECTION FLUORESCENCE MICROSCOPY
    AXELROD, D
    STOUT, AL
    MCKIERNAN, AE
    WANG, MD
    BIOPHYSICAL JOURNAL, 1994, 66 (02) : A251 - A251
  • [23] Total internal reflection fluorescence microscopy in cell biology
    Axelrod, D
    TRAFFIC, 2001, 2 (11) : 764 - 774
  • [24] Total internal reflection fluorescence microscopy in cell biology
    Axelrod, D
    BIOPHOTONICS, PT B, 2003, 361 : 1 - 33
  • [25] Detection efficiency in total internal reflection fluorescence microscopy
    Leutenegger, Marcel
    Lasser, Theo
    OPTICS EXPRESS, 2008, 16 (12) : 8519 - 8531
  • [26] Image processing in total internal reflection fluorescence microscopy
    Kuznetsova, O. B.
    Savchenko, E. A.
    Andryakov, A. A.
    Savchenko, E. Y.
    Musakulova, Z. A.
    INTERNATIONAL CONFERENCE EMERGING TRENDS IN APPLIED AND COMPUTATIONAL PHYSICS 2019 (ETACP-2019), 2019, 1236
  • [27] DETECTION OF THE EVANESCENT LIGHT-FIELD IN TOTAL INTERNAL-REFLECTION IN PHOTON-TUNNELING MICROSCOPY
    PAPAYAN, GV
    VORONIN, YM
    SHCHETNEV, YF
    ZHDANOV, GS
    TOPORKOV, SA
    KICHENKO, EV
    SOVIET JOURNAL OF OPTICAL TECHNOLOGY, 1993, 60 (06): : 368 - 371
  • [28] Total internal reflection and evanescent gain
    Grepstad, Jon Olav
    Skaar, Johannes
    OPTICS EXPRESS, 2011, 19 (22): : 21404 - 21418
  • [29] Three-dimensional characterization of tethered microspheres by total internal reflection fluorescence microscopy
    Blumberg, S
    Gajraj, A
    Pennington, MW
    Meiners, JC
    BIOPHYSICAL JOURNAL, 2005, 89 (02) : 1272 - 1281
  • [30] Analysis of evanescent waves scattering by a single particle in Total Internal Reflection Microscopy
    Eremina, E.
    Wriedt, T.
    Helden, L.
    PIERS 2006 CAMBRIDGE: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PROCEEDINGS, 2006, : 447 - +