Well-posedness for the free-boundary ideal compressible magnetohydrodynamic equations with surface tension

被引:13
|
作者
Trakhinin, Yuri [1 ,2 ]
Wang, Tao [3 ]
机构
[1] Sobolev Inst Math, Koptyug Av 4, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Pirogova Str 1, Novosibirsk 630090, Russia
[3] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Free boundary problem; Ideal compressible magnetohydrodynamics; Surface tension; Well-posedness; Nash-Moser iteration; CURRENT-VORTEX SHEETS; EULER EQUATIONS; LOCAL EXISTENCE; MOTION; LIQUID; MHD;
D O I
10.1007/s00208-021-02180-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the local existence and uniqueness of solutions to the free-boundary ideal compressible magnetohydrodynamic equations with surface tension in three spatial dimensions by a suitable modification of the Nash-Moser iteration scheme. The main ingredients in proving the convergence of the scheme are the tame estimates and unique solvability of the linearized problem in the anisotropic Sobolev spaces H-m * for m large enough. In order to derive the tame estimates, wemake full use of the boundary regularity enhanced from the surface tension. The unique solution of the linearized problem is constructed by designing some suitable e-regularization and passing to the limit epsilon -> 0.
引用
收藏
页码:761 / 808
页数:48
相关论文
共 50 条
  • [41] GLOBAL WELL-POSEDNESS OF THE FREE-SURFACE DAMPED INCOMPRESSIBLE EULER EQUATIONS WITH SURFACE TENSION
    Lian, Jiali
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (03) : 587 - 608
  • [42] Global well-posedness to three-dimensional full compressible magnetohydrodynamic equations with vacuum
    Yang Liu
    Xin Zhong
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [43] Local Well-Posedness for the Motion of a Compressible, Self-Gravitating Liquid with Free Surface Boundary
    Daniel Ginsberg
    Hans Lindblad
    Chenyun Luo
    Archive for Rational Mechanics and Analysis, 2020, 236 : 603 - 733
  • [44] Local Well-Posedness for the Motion of a Compressible, Self-Gravitating Liquid with Free Surface Boundary
    Ginsberg, Daniel
    Lindblad, Hans
    Luo, Chenyun
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 236 (02) : 603 - 733
  • [45] Local well-posedness of the vacuum free boundary of 3-D compressible Navier–Stokes equations
    Guilong Gui
    Chao Wang
    Yuxi Wang
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [46] Well-posedness of the boundary layer equations
    Lombardo, MC
    Cannone, M
    Sammartino, M
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (04) : 987 - 1004
  • [47] Global well-posedness of the free-surface incompressible ideal MHD equations with velocity damping
    Liu, Mengmeng
    Jiang, Han
    Zhang, Yajie
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (06):
  • [48] LOCAL WELL-POSEDNESS AND LOW MACH NUMBER LIMIT OF THE COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS IN CRITICAL SPACES
    Li, Fucai
    Mu, Yanmin
    Wang, Dehua
    KINETIC AND RELATED MODELS, 2017, 10 (03) : 741 - 784
  • [49] The well-posedness and exact solution of fractional magnetohydrodynamic equations
    Mingshuo Liu
    Yong Fang
    Huanhe Dong
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [50] Well Posedness for the Motion of a Compressible Liquid with Free Surface Boundary
    Hans Lindblad
    Communications in Mathematical Physics, 2005, 260 : 319 - 392