Spatially resolving valley quantum interference of a donor in silicon

被引:0
|
作者
Salfi, J. [1 ]
Mol, J. A. [1 ]
Rahman, R. [2 ]
Klimeck, G. [2 ]
Simmons, M. Y. [1 ]
Hollenberg, L. C. L. [3 ]
Rogge, S. [1 ]
机构
[1] Univ New S Wales, Sch Phys, Ctr Quantum Computat & Commun Technol, Sydney, NSW 2052, Australia
[2] Purdue Univ, W Lafayette, IN 47906 USA
[3] Univ Melbourne, Sch Phys, Ctr Quantum Computat & Commun Technol, Parkville, Vic 3010, Australia
基金
美国国家科学基金会;
关键词
SPIN-LATTICE RELAXATION; ELECTRON-SPIN; SINGLE DOPANTS; STATES; ATOM; SEMICONDUCTORS; TRANSPORT; READOUT; QUBIT;
D O I
10.1038/NMAT3941
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electron and nuclear spins of donor ensembles in isotopically pure silicon experience a vacuum-like environment, giving them extraordinary coherence. However, in contrast to a real vacuum, electrons in silicon occupy quantum superpositions of valleys in momentum space. Addressable single-qubit and two-qubit operations in silicon require that qubits are placed near interfaces, modifying the valley degrees of freedom associated with these quantum superpositions and strongly influencing qubit relaxation and exchange processes. Yet to date, spectroscopic measurements have only probed wavefunctions indirectly, preventing direct experimental access to valley population, donor position and environment. Here we directly probe the probability density of single quantum states of individual subsurface donors, in real space and reciprocal space, using scanning tunnelling spectroscopy. We directly observe quantum mechanical valley interference patterns associated with linear superpositions of valleys in the donor ground state. The valley population is found to be within 5% of a bulk donor when 2.85 +/- 0.45nm from the interface, indicating that valley-perturbation-induced enhancement of spin relaxation will be negligible for depths greater than 3 nm. The observed valley interference will render two-qubit exchange gates sensitive to atomic-scale variations in positions of subsurface donors. Moreover, these results will also be of interest for emerging schemes proposing to encode information directly in valley polarization.
引用
收藏
页码:605 / 610
页数:6
相关论文
共 50 条
  • [11] Nonadiabatic quantum control of valley states in silicon
    Gardin, Alan
    Monaghan, Ross D.
    Whittaker, Tyler
    Rahman, Rajib
    Tettamanzi, Giuseppe C.
    PHYSICAL REVIEW B, 2022, 105 (07)
  • [12] Valley Splitting in a Silicon Quantum Device Platform
    Miwa, Jill A.
    Warschkow, Oliver
    Carter, Damien J.
    Marks, Nigel A.
    Mazzola, Federico
    Simmons, Michelle Y.
    Wells, Justin W.
    NANO LETTERS, 2014, 14 (03) : 1515 - 1519
  • [13] Valley splitting in strained silicon quantum wells
    Boykin, TB
    Klimeck, G
    Eriksson, MA
    Friesen, M
    Coppersmith, SN
    von Allmen, P
    Oyafuso, F
    Lee, S
    APPLIED PHYSICS LETTERS, 2004, 84 (01) : 115 - 117
  • [14] Control of Valley Polarization Based on Quantum Path Interference
    Lu, Ling-Jie
    Bian, Xue-Bin
    ULTRAFAST SCIENCE, 2024, 4
  • [15] Valley quantum interference modulated by hyperbolic shear polaritons
    Jia, Guangyi
    Luo, Jinxuan
    Cui, Congyu
    Kou, Ruijuan
    Tian, Yali
    Schubert, Mathias
    PHYSICAL REVIEW B, 2024, 109 (15)
  • [16] Valley Kondo effect in silicon quantum dots
    Shiau, Shiue-yuan
    Chutia, Sucismita
    Joynt, Robert
    PHYSICAL REVIEW B, 2007, 75 (19)
  • [17] Valley blockade in a silicon double quantum dot
    Perron, Justin K.
    Gullans, Michael J.
    Taylor, Jacob M.
    Stewart, M. D., Jr.
    Zimmerman, Neil M.
    PHYSICAL REVIEW B, 2017, 96 (20)
  • [18] Valley Blockade Quantum Switching in Silicon Nanostructures
    Prati, Enrico
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (10) : 8522 - 8526
  • [19] Valley degeneracies in (111) silicon quantum wells
    Kharche, Neerav
    Kim, Seongmin
    Boykin, Timothy B.
    Klimeck, Gerhard
    APPLIED PHYSICS LETTERS, 2009, 94 (04)
  • [20] Controllable valley splitting in silicon quantum devices
    Goswami, Srijit
    Slinker, K. A.
    Friesen, Mark
    McGuire, L. M.
    Truitt, J. L.
    Tahan, Charles
    Klein, L. J.
    Chu, J. O.
    Mooney, P. M.
    van der Weide, D. W.
    Joynt, Robert
    Coppersmith, S. N.
    Eriksson, Mark A.
    NATURE PHYSICS, 2007, 3 (01) : 41 - 45