Spatially resolving valley quantum interference of a donor in silicon

被引:0
|
作者
Salfi, J. [1 ]
Mol, J. A. [1 ]
Rahman, R. [2 ]
Klimeck, G. [2 ]
Simmons, M. Y. [1 ]
Hollenberg, L. C. L. [3 ]
Rogge, S. [1 ]
机构
[1] Univ New S Wales, Sch Phys, Ctr Quantum Computat & Commun Technol, Sydney, NSW 2052, Australia
[2] Purdue Univ, W Lafayette, IN 47906 USA
[3] Univ Melbourne, Sch Phys, Ctr Quantum Computat & Commun Technol, Parkville, Vic 3010, Australia
基金
美国国家科学基金会;
关键词
SPIN-LATTICE RELAXATION; ELECTRON-SPIN; SINGLE DOPANTS; STATES; ATOM; SEMICONDUCTORS; TRANSPORT; READOUT; QUBIT;
D O I
10.1038/NMAT3941
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electron and nuclear spins of donor ensembles in isotopically pure silicon experience a vacuum-like environment, giving them extraordinary coherence. However, in contrast to a real vacuum, electrons in silicon occupy quantum superpositions of valleys in momentum space. Addressable single-qubit and two-qubit operations in silicon require that qubits are placed near interfaces, modifying the valley degrees of freedom associated with these quantum superpositions and strongly influencing qubit relaxation and exchange processes. Yet to date, spectroscopic measurements have only probed wavefunctions indirectly, preventing direct experimental access to valley population, donor position and environment. Here we directly probe the probability density of single quantum states of individual subsurface donors, in real space and reciprocal space, using scanning tunnelling spectroscopy. We directly observe quantum mechanical valley interference patterns associated with linear superpositions of valleys in the donor ground state. The valley population is found to be within 5% of a bulk donor when 2.85 +/- 0.45nm from the interface, indicating that valley-perturbation-induced enhancement of spin relaxation will be negligible for depths greater than 3 nm. The observed valley interference will render two-qubit exchange gates sensitive to atomic-scale variations in positions of subsurface donors. Moreover, these results will also be of interest for emerging schemes proposing to encode information directly in valley polarization.
引用
收藏
页码:605 / 610
页数:6
相关论文
共 50 条
  • [1] Spatially resolving valley quantum interference of a donor in silicon
    Salfi J.
    Mol J.A.
    Rahman R.
    Klimeck G.
    Simmons M.Y.
    Hollenberg L.C.L.
    Rogge S.
    Nature Materials, 2014, 13 (6) : 605 - 610
  • [2] Valley Splitting in Silicon from the Interference Pattern of Quantum Oscillations
    Lodari, M.
    Lampert, L.
    Zietz, O.
    Pillarisetty, R.
    Clarke, J. S.
    Scappucci, G.
    PHYSICAL REVIEW LETTERS, 2022, 128 (17)
  • [3] Spatially resolving classical and quantum entanglement with structured photons
    Peters, Cade
    Ornelas, Pedro
    Nape, Isaac
    Forbes, Andrew
    PHYSICAL REVIEW A, 2023, 108 (05)
  • [4] Quantum interference and conductance in silicon quantum wires
    Bagraev, NT
    Gehlhoff, W
    Ivanov, VK
    Klyachkin, LE
    Malyarenko, AM
    Naeser, A
    Rykov, SA
    Shelykh, IA
    INTERNATIONAL WORKSHOP ON NONDESTRUCTIVE TESTING AND COMPUTER SIMULATIONS IN SCIENCE AND ENGINEERING, 1999, 3687 : 112 - 121
  • [5] Valley interference and spin exchange at the atomic scale in silicon
    Voisin, B.
    Bocquel, J.
    Tankasala, A.
    Usman, M.
    Salfi, J.
    Rahman, R.
    Simmons, M. Y.
    Hollenberg, L. C. L.
    Rogge, S.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [6] Valley interference and spin exchange at the atomic scale in silicon
    B. Voisin
    J. Bocquel
    A. Tankasala
    M. Usman
    J. Salfi
    R. Rahman
    M. Y. Simmons
    L. C. L. Hollenberg
    S. Rogge
    Nature Communications, 11
  • [7] Controlling of the spatially dependent absorption spectrum by quantum interference
    Zhang, Yufan
    Kong, Deyi
    Wang, Fei
    APPLIED OPTICS, 2024, 63 (28) : 7410 - 7417
  • [8] Valley population of donor states in highly strained silicon
    Voisin, B.
    Ng, K. S. H.
    Salfi, J.
    Usman, M.
    Wong, J. C.
    Tankasala, A.
    Johnson, B. C.
    McCallum, J. C.
    Hutin, L.
    Bertrand, B.
    Vinet, M.
    Valanoor, N.
    Simmons, M. Y.
    Rahman, R.
    Hollenberg, L. C. L.
    Rogge, S.
    MATERIALS FOR QUANTUM TECHNOLOGY, 2022, 2 (02):
  • [9] Silicon superconducting quantum interference device
    Duvauchelle, J. E.
    Francheteau, A.
    Marcenat, C.
    Chiodi, F.
    Debarre, D.
    Hasselbach, K.
    Kirtley, J. R.
    Lefloch, F.
    APPLIED PHYSICS LETTERS, 2015, 107 (07)
  • [10] Donor Spins in Silicon for Quantum Technologies
    Morello, Andrea
    Pla, Jarryd J.
    Bertet, Patrice
    Jamieson, David N.
    ADVANCED QUANTUM TECHNOLOGIES, 2020, 3 (11)