In this paper, contact metric manifolds whose characteristic vector field xi is a harmonic vector field are called H-contact manifolds. We show that a (2n + 1)-dimensional contact metric manifold is an H-contact manifold if and only if xi is an eigenvector of the Ricci operator (J.C. Gonzalez-Davila and L. Vanhecke [J. Geom. 72 (2001) 65-76] proved this result for n = 1). Consequently, the class of H-contact manifolds is very large. Moreover, we give some application about the topology of a compact H-contact manifold. (C) 2003 Elsevier B.V. All rights reserved.
机构:
Departamento de Matemática Fundamental, Sección de Geometría y Topología, Universidad de La Laguna, La LagunaDepartamento de Matemática Fundamental, Sección de Geometría y Topología, Universidad de La Laguna, La Laguna
González-Dávila J.C.
Vanhecke L.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, Katholieke Universiteit Leuven, 3001 LeuvenDepartamento de Matemática Fundamental, Sección de Geometría y Topología, Universidad de La Laguna, La Laguna