Rough solutions for the periodic Schrodinger-Korteweg-de Vries system

被引:10
|
作者
Arbieto, A.
Corcho, A. J.
Matheus, C.
机构
[1] Inst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
[2] Fed Univ Rio De Janeiro, IM, Cidade Univ, BR-21945970 Rio De Janeiro, Brazil
[3] Univ Fed Alagoas, Dept Matemat, BR-57072900 Maceio, AL, Brazil
关键词
local and global well-posedness; Schrodinger-Korteweg-de Vries system;
D O I
10.1016/j.jde.2006.04.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove two new mixed sharp bilinear estimates of Schrodinger-Airy type. In particular, we obtain the local well-posedness of the Cauchy problem of the Schrodinger-Kortweg-de Vries (NLS-KdV) system in the periodic setting. Our lowest regularity is H-1/4 x L-2, which is somewhat far from the naturally expected endpoint L-2 x H-1/2. This is a novel phenomena related to the periodicity condition. Indeed, in the continuous case, Corcho and Linares proved local well-posedness for the natural endpoint L-2 x H-3/4+. Nevertheless, we conclude the global well-posedness of the NLS-KdV system in the energy space H-1 x H-1 using our local well-posedness result and three conservation laws discovered by M. Tsutsumi. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:295 / 336
页数:42
相关论文
共 50 条
  • [31] New periodic wave and soliton solutions for system of coupled Korteweg-de Vries equations
    Rady, A. S. Abdel
    Khater, A. H.
    Osman, E. S.
    Khalfallah, Mohammed
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) : 406 - 414
  • [32] Periodic and Almost Periodic Solutions for a Coupled System of Two Korteweg-de Vries Equations with Boundary Forces
    Chen, Mo
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (03)
  • [33] On exact solutions of a coupled Korteweg-de Vries system
    Yang, Xu-Dong
    Ruan, Hang-Yu
    Lou, Sen Yue
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2007, 62 (7-8): : 353 - 367
  • [34] Exact Solutions for a Coupled Korteweg-de Vries System
    Zuo, Da-Wei
    Jia, Hui-Xian
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (11): : 1053 - 1058
  • [35] Periodic solutions of the Korteweg-de Vries equation driven by white noise
    De Bouard, A
    Debussche, A
    Tsutsumi, Y
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (03) : 815 - 855
  • [36] Periodic solutions of Wick-type stochastic Korteweg–de Vries equations
    JIN HYUK CHOI
    DAEHO LEE
    HYUNSOO KIM
    Pramana, 2016, 87
  • [37] New Positon, Negaton, and Complexiton Solutions for a Coupled Korteweg-de Vries - Modified Korteweg-de Vries System
    Hu, Hengchun
    Yang, Mingyuan
    Zhang, Ling
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (6-7): : 347 - 354
  • [38] QUASI-PERIODIC SOLUTIONS OF DISCRETIZED KORTEWEG-DE VRIES EQUATIONS
    ZAGRODZINSKI, J
    PHYSICAL REVIEW E, 1995, 51 (03): : 2566 - 2572
  • [39] Well-posedness and lower bounds of the growth of weighted norms for the Schrodinger-Korteweg-de Vries interactions on the half-line
    Cavalcante, Marcio
    Corcho, Adan J.
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (04) : 1563 - 1596
  • [40] Primitive solutions of the Korteweg–de Vries equation
    S. A. Dyachenko
    P. Nabelek
    D. V. Zakharov
    V. E. Zakharov
    Theoretical and Mathematical Physics, 2020, 202 : 334 - 343