Rough solutions for the periodic Schrodinger-Korteweg-de Vries system

被引:10
|
作者
Arbieto, A.
Corcho, A. J.
Matheus, C.
机构
[1] Inst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
[2] Fed Univ Rio De Janeiro, IM, Cidade Univ, BR-21945970 Rio De Janeiro, Brazil
[3] Univ Fed Alagoas, Dept Matemat, BR-57072900 Maceio, AL, Brazil
关键词
local and global well-posedness; Schrodinger-Korteweg-de Vries system;
D O I
10.1016/j.jde.2006.04.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove two new mixed sharp bilinear estimates of Schrodinger-Airy type. In particular, we obtain the local well-posedness of the Cauchy problem of the Schrodinger-Kortweg-de Vries (NLS-KdV) system in the periodic setting. Our lowest regularity is H-1/4 x L-2, which is somewhat far from the naturally expected endpoint L-2 x H-1/2. This is a novel phenomena related to the periodicity condition. Indeed, in the continuous case, Corcho and Linares proved local well-posedness for the natural endpoint L-2 x H-3/4+. Nevertheless, we conclude the global well-posedness of the NLS-KdV system in the energy space H-1 x H-1 using our local well-posedness result and three conservation laws discovered by M. Tsutsumi. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:295 / 336
页数:42
相关论文
共 50 条