X-Ray Calc: A software for the simulation of X-ray reflectivity

被引:13
|
作者
Penkov, Oleksiy, V [1 ]
Kopylets, Igor A. [2 ]
Khadem, Mahdi [3 ]
Qin, Tianzuo [1 ]
机构
[1] Zhejiang Univ, ZJU UIUC Inst, Int Campus, Haining 314400, Peoples R China
[2] Natl Tech Univ KhPI, UA-61002 Kharkiv, Ukraine
[3] Yonsei Univ, Dept Mech Engn, Seoul 03722, South Korea
关键词
X-ray reflectivity; Grazing incidence X-ray reflectometry; Coatings; Simulation; Fitting; MULTILAYER MIRRORS; SCATTERING; COATINGS; FILMS;
D O I
10.1016/j.softx.2020.100528
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
X-Ray Calc is a fast and convenient tool for the simulation of X-ray reflectivity (XRR). The software was developed with the aim of simplification and acceleration of the XRR simulation through a user-friendly interface and optimized computation core. X-Ray Calc implements the recursive approach of calculation of XRR based on Fresnel equations and proposes special instruments for the modeling of periodical multilayer structures. X-Ray Calc computes XRR as a function of wavelength or grazing angle and can be used for the simulation of the performance of X-ray mirrors. Computer modeling and fitting to experimental grazing incidence X-ray reflectometry (GIXR) is a powerful tool. It could be used for a comprehensive analysis of the structure of single- and multi-component layered nanomaterials. This method allows for the obtaining of information about thickness, roughness, and density of individual layers in coatings by the fitting of the modeled GIXR to the experimental ones. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] X-Ray Calc 3: improved software for simulation and inverse problem solving for X-ray reflectivity
    Penkov, Oleksiy V.
    Li, Mingfeng
    Mikki, Said
    Devizenko, Alexander
    Kopylets, Ihor
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2024, 57 : 555 - 566
  • [2] Evaluation of X-ray reflectivity of a MEMS X-ray optic
    Mitsuishi, I.
    Ezoe, Y.
    Koshiishi, M.
    Mita, M.
    Maeda, Y.
    Yamasaki, N. Y.
    Mitsuda, K.
    Shirata, T.
    Hayashi, T.
    Takano, T.
    Maeda, R.
    2008 IEEE/LEOS INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS, 2008, : 104 - 105
  • [3] GIMPy: a software for the simulation of X-ray fluorescence and reflectivity of layered materials
    Brigidi, Fabio
    Pepponi, Giancarlo
    X-RAY SPECTROMETRY, 2017, 46 (02) : 116 - 122
  • [4] LEPTOS: A universal software for X-ray reflectivity and diffraction
    Ulyanenkov, A
    ADVANCES IN COMPUTATIONAL METHODS FOR X-RAY AND NEUTRON OPTICS, 2004, 5536 : 1 - 15
  • [5] Reflectivity test of X-ray mirrors for deep X-ray lithography
    Nazmov, V.
    Reznikova, E.
    Last, A.
    Boerner, M.
    Mohr, J.
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2008, 14 (9-11): : 1299 - 1303
  • [6] Reflectivity test of X-ray mirrors for deep X-ray lithography
    V. Nazmov
    E. Reznikova
    A. Last
    M. Boerner
    J. Mohr
    Microsystem Technologies, 2008, 14 : 1299 - 1303
  • [7] X-ray and neutron reflectivity
    Tolan, M
    Press, W
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1998, 213 (06): : 319 - 336
  • [8] X-ray reflectivity imager with 15 W power X-ray source
    Jiang, Jinxing
    Sakurai, Kenji
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (09):
  • [9] X-ray diffraction and X-ray reflectivity applied to investigation of thin films
    Rafaja, D
    ADVANCES IN SOLID STATE PHYSICS 41, 2001, 41 : 275 - 286
  • [10] MODERATE RESOLUTION X-RAY REFLECTIVITY
    SHINDLER, JD
    SUTER, RM
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1992, 63 (11): : 5343 - 5347