Monotonic solutions for a quadratic integral equation of fractional order

被引:10
|
作者
El-Sayed, A. M. A. [1 ]
Al-Issa, Sh M. [2 ,3 ]
机构
[1] Alexandria Univ, Fac Sci, Alexandria, Egypt
[2] Lebanese Int Univ, Fac Sci, Beirut, Lebanon
[3] Int Univ Beirut, Fac Sci, Beirut, Lebanon
来源
AIMS MATHEMATICS | 2019年 / 4卷 / 03期
关键词
fractional calculus; quadratic integral equation; fixed point theory; measure of noncompactness;
D O I
10.3934/math.2019.3.821
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a global existence theorem of a positive monotonic integrable solution for the mixed type nonlinear quadratic integral equation of fractional order x(t) = p(t) + h(t, x(t)) integral(t)(0) k(t, s)(f(1)(s, I-alpha f(2)(s, x(s))) + g(1)(s, I-beta g(2)(s, x(s))))ds, t is an element of[0, 1], alpha,beta > 0 by applying the technique of measures of weak noncompactness. As an application, we consider an initial value problem of arbitrary (fractional) order differential equations.
引用
收藏
页码:821 / 830
页数:10
相关论文
共 50 条
  • [41] Periodic solutions of quadratic Weyl fractional integral equations
    Chen, Qian
    Wang, JinRong
    Chen, Fulai
    Zhang, Yuruo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (06) : 1945 - 1955
  • [42] On monotonic solutions of an integral equation of Volterra-Stieltjes type
    Caballero, J
    Rocha, J
    Sadarangani, K
    MATHEMATISCHE NACHRICHTEN, 2006, 279 (1-2) : 130 - 141
  • [43] On solution of functional integral equation of fractional order
    Mollapourasl, R.
    Ostadi, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 631 - 643
  • [44] Positive Solutions for Higher Order Nonlocal Fractional Differential Equation with Integral Boundary Conditions
    Jiang, Jiqiang
    Liu, Weiwei
    Wang, Hongchuan
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [45] GLOBAL ATTRACTIVITY OF SOLUTIONS FOR A NONLINEAR FUNCTIONAL INTEGRAL EQUATION OF FRACTIONAL ORDER IN BANACH SPACE
    Karande, B. D.
    10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2014), 2014, 1637 : 469 - 478
  • [46] Nondecreasing solutions of a quadratic singular Volterra integral equation
    Banas, J.
    Rzepka, B.
    MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (3-4) : 488 - 496
  • [47] On solutions of a quadratic Urysohn integral equation on an unbounded interval
    Banas, Jozef
    Olszowy, Leszek
    DYNAMIC SYSTEMS AND APPLICATIONS, 2008, 17 (02): : 255 - 269
  • [48] Nondecreasing solutions of a quadratic integral equation of Urysohn type
    El-Sayed, WG
    Rzepka, B
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (6-7) : 1065 - 1074
  • [49] On the existence of integrable solutions for a nonlinear quadratic integral equation
    Bellour A.
    O'Regan D.
    Taoudi M.-A.
    Journal of Applied Mathematics and Computing, 2014, 46 (1-2) : 67 - 77
  • [50] EXISTENCE OF POSITIVE SOLUTIONS FOR A NONLINEAR QUADRATIC INTEGRAL EQUATION
    Wang, Chu-Hang
    Ding, Hui-Sheng
    N'Guerekata, Gaston M.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,