ANALYSIS OF THE DGFEM FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS

被引:0
|
作者
Feistauer, Miloslav [1 ]
Kucera, Vaclav [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague 18675 8, Czech Republic
关键词
nonlinear nonstationary convection-diffusion problems; nonlinear convection; nonlinear diffusion; discontinuous Galerkin finite element method; NIPG; SIPG and IIPG versions; optimal error estimates;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is concerned with the analysis of error estimates of the discontinuous Galerkin finite element method (DGFEM) for the numerical solution of nonstationary nonlinear convection-diffusion problems equipped with Dirichlet boundary conditions. First, the case of nonlinear diffusion as well as nonlinear convection is considered. Then, the optimal L-infinity(L-2)-error estimate is discussed in the case of nonlinear convection and linear diffusion.
引用
收藏
页码:33 / 48
页数:16
相关论文
共 50 条
  • [31] Meshless techniques for convection-diffusion problems
    Liu, GR
    Gu, YT
    Computational Mechanics, Proceedings, 2004, : 432 - 437
  • [32] Robust discretizations of convection-diffusion problems
    Roos, HG
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 511 - 512
  • [33] A meshless method for convection-diffusion problems
    Zerroukat, M
    ADVANCED COMPUTATIONAL METHODS IN HEAT TRANSFER V, 1998, : 403 - 414
  • [34] A VARIATIONAL FORMULATION FOR CONVECTION-DIFFUSION PROBLEMS
    ORTIZ, M
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1985, 23 (07) : 717 - 731
  • [35] Schwarz methods for convection-diffusion problems
    MacMullen, H
    O'Riordan, E
    Shishkin, GI
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2001, 1988 : 544 - 551
  • [36] ANALYSIS OF A DG METHOD FOR SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEMS
    Lin, Runchang
    Ye, Xiu
    Zhang, Shangyou
    Zhu, Peng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (03): : 830 - 841
  • [37] An analysis of the convection-diffusion problems using meshless and meshbased methods
    Wu, Xue-Hong
    Chang, Zhi-Juan
    Lu, Yan-Li
    Tao, Wen-Quan
    Shen, Sheng-Ping
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (06) : 1040 - 1048
  • [38] Analysis of a multiscale discontinuous Galerkin method for convection-diffusion problems
    Buffa, A.
    Hughes, T. J. R.
    Sangalli, G.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) : 1420 - 1440
  • [39] Parameter estimation in convection dominated nonlinear convection-diffusion problems by the relaxation method and the adjoint equation
    Malengier, B.
    Van Keer, Roger
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 215 (02) : 477 - 483
  • [40] Modified streamline diffusion schemes for convection-diffusion problems
    Shih, YT
    Elman, HC
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 174 (1-2) : 137 - 151