Application of MEMS Gyroscopes and Accelerometers in FSM Stabilization

被引:1
|
作者
Tian, Jing [1 ,2 ,3 ,4 ]
Yang, Wenshu [1 ,2 ]
Peng, Zhenming
Deng, Chao [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Opt & Elect, Chengdu 610209, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Optoelect Informat, Chengdu 610054, Peoples R China
[3] Chinese Acad Sci, Key Lab Opt Engn, Chengdu 610209, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
来源
AOPC 2015: OPTICAL TEST, MEASUREMENT, AND EQUIPMENT | 2015年 / 9677卷
关键词
Fast Steering Mirror; Electro-Optical Tracking System; MEMS; Gyroscope; Accelerometer;
D O I
10.1117/12.2202953
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Gimbals and Fast steering mirrors (FSMs) are commonly used to stabilize the line-of-sight (LOS) of the electro-optical tracking system mounted on moving platforms. The gimbal is used to restrain the vibration of low frequencies, and the FSM is used to restrain the vibration of high frequencies. The restraining performance of the Electro-Optical tracking system is equal to the multiplication of the restraining performance of the gimbal and the FSM. The vibration of high frequencies is mainly restrained by the FSM, and so the performance of the FSM is very important to the Electro-Optical tracking system. There are two ways to improve the stabilization accuracy and bandwidth of the FSM, one way is to improve the accuracy and bandwidth of inertial sensors, and the other way is to use low weight inertial sensors to reduce the load of FSM and increase the mechanical resonance frequency. And so the inertial sensors of high accuracy, high bandwidth and low weight are the key to improve the stabilization accuracy and bandwidth of theFSM.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A Static Calibration of MEMS Accelerometers
    Sysel, Martin
    CYBERNETICS AND MATHEMATICS APPLICATIONS IN INTELLIGENT SYSTEMS, CSOC2017, VOL 2, 2017, 574 : 362 - 368
  • [42] Performance evaluation of MEMS accelerometers
    Albarbar, A.
    Badri, A.
    Sinha, Jyod K.
    Starr, A.
    MEASUREMENT, 2009, 42 (05) : 790 - 795
  • [43] Evaluation of MEMS capacitive accelerometers
    Béliveau, A
    Spencer, GT
    Thomas, KA
    Roberson, SL
    IEEE DESIGN & TEST OF COMPUTERS, 1999, 16 (04): : 48 - 56
  • [44] Radiometric effects in MEMS Accelerometers
    Nagel, Cristian
    Zoller, Tobias
    Ante, Frederik
    Classen, Johannes
    Putnik, Martin
    Mehner, Jan
    2017 IEEE SENSORS, 2017, : 13 - 15
  • [45] MEMS technology motors accelerometers
    Browne, Jack
    MICROWAVES & RF, 2006, 45 (06) : 90 - 90
  • [46] Diamagnetically levitated MEMS accelerometers
    Garmire, D.
    Choo, H.
    Kant, R.
    Govindjee, S.
    Sequin, C. H.
    Muller, R. S.
    Demmel, J.
    TRANSDUCERS '07 & EUROSENSORS XXI, DIGEST OF TECHNICAL PAPERS, VOLS 1 AND 2, 2007,
  • [47] A Method of Fabricating MEMS Accelerometers
    Chen, S.
    Chien, H. T.
    Lin, J. Y.
    Hsu, Y. W.
    2008 EMAP CONFERENCE PROCEEDINGS, 2008, : 84 - 87
  • [48] Bayesian Calibration of MEMS Accelerometers
    Duerr, Oliver
    Fan, Po-Yu
    Yin, Zong-Xian
    IEEE SENSORS JOURNAL, 2023, 23 (12) : 13319 - 13326
  • [49] Optical Interferometric MEMS Accelerometers
    Zhao, Minghui
    Qi, Yonghong
    Wang, Hailong
    Xie, Zongxiang
    Li, Bo
    Wang, Hairong
    Wei, Xueyong
    LASER & PHOTONICS REVIEWS, 2024, 18 (02)
  • [50] Sensing tilt with MEMS accelerometers
    Luczak, Sergiusz
    Oleksiuk, Waldemar
    Bodnicki, Maciej
    IEEE SENSORS JOURNAL, 2006, 6 (06) : 1669 - 1675