Multi-Scale CNN based on Attention Mechanism for Rolling Bearing Fault Diagnosis

被引:0
|
作者
Hao, Yijia [1 ]
Wang, Huan [2 ]
Liu, Zhiliang [2 ]
Han, Haoran [1 ]
机构
[1] Univ Elect Sci & Technol China, Glasgow Coll, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu, Peoples R China
关键词
Intelligent fault diagnosis; Convolutional neural network; Multi-scale learning; Attention mechanism; CONVOLUTIONAL NEURAL-NETWORK;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In recent years, deep learning has shown great vitality in the field of intelligent fault diagnosis. However, most diagnostic models are not yet capable enough to capture the rich multi-scale features in raw vibration signals. Therefore, a multi-scale, attention-mechanism based, convolutional neural network (MSAM-CNN), is proposed to automatically diagnose health states of rolling bearings. The network is one-dimensional, and the information of the original vibration signal on different scales is processed by a parallel multi-branch structure. Then the learned complementary features from different branches are fused. Meanwhile, the attention mechanism can automatically select the optimal features. The MSAM-CNN is evaluated on the bearing dataset that is provided by Case Western Reserve University (CWRU). Experimental results indicate that the proposed network can greatly improve the fault recognition ability of the convolutional neural network, and the MSAM-CNN is superior to four forefront deep learning fault diagnosis networks under strong noise interference.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Rolling Bearing Fault Diagnosis based on Multi-scale Entropy Feature and Ensemble Learning
    Zhang, Mei
    Wang, Zhihui
    Zhang, Jie
    MANUFACTURING TECHNOLOGY, 2024, 24 (03): : 492 - 506
  • [22] Rolling bearing fault diagnosis method based on a multi-scale and improved gated recurrent neural network with dual attention
    Wang M.
    Deng A.
    Ma T.
    Zhang Y.
    Xue Y.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (06): : 84 - 92and103
  • [23] Rolling Bearing Fault Diagnosis Method Based on Attention CNN and BiLSTM Network
    Guo, Yurong
    Mao, Jian
    Zhao, Man
    NEURAL PROCESSING LETTERS, 2023, 55 (03) : 3377 - 3410
  • [24] Rolling Bearing Fault Diagnosis Method Based on Attention CNN and BiLSTM Network
    Yurong Guo
    Jian Mao
    Man Zhao
    Neural Processing Letters, 2023, 55 : 3377 - 3410
  • [25] Bearing Fault Diagnosis Based on Shallow Multi-Scale Convolutional Neural Network with Attention
    Huang, Tengda
    Fu, Sheng
    Feng, Haonan
    Kuang, Jiafeng
    ENERGIES, 2019, 12 (20)
  • [26] Multi-scale quaternion CNN and BiGRU with cross self-attention feature fusion for fault diagnosis of bearing
    Liu, Huanbai
    Zhang, Fanlong
    Tan, Yin
    Huang, Lian
    Li, Yan
    Huang, Guoheng
    Luo, Shenghong
    Zeng, An
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (08)
  • [27] Rolling Bearing Fault Diagnosis Based on Wavelet Packet Decomposition and Multi-Scale Permutation Entropy
    Zhao, Li-Ye
    Wang, Lei
    Yan, Ru-Qiang
    ENTROPY, 2015, 17 (09): : 6447 - 6461
  • [28] A rolling bearing fault diagnosis method based on multi-scale knowledge distillation and continual learning
    Xia, Yifei
    Gao, Jun
    Shao, Xing
    Wang, Cuixiang
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (12): : 276 - 285
  • [29] Rolling bearing fault diagnosis based on efficient time channel attention optimized deep multi-scale convolutional neural networks
    Li, Ou
    Zhu, Jing
    Chen, Minghui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [30] Fault diagnosis of rolling bearing based on feature fusion of multi-scale deep convolutional network
    Wang N.
    Ma P.
    Zhang H.
    Wang C.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (04): : 351 - 358