Global weighted estimates for quasilinear elliptic equations with non-standard growth

被引:33
|
作者
Zhang, Chao [1 ]
Zhou, Shulin [2 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国博士后科学基金;
关键词
Elliptic; p(x)-Laplacian; A(p) weight; Gradient estimate; BMO space; Reifenberg flat domain; VARIABLE EXPONENT; BMO COEFFICIENTS; GRADIENT; SPACES; INTEGRABILITY; REGULARITY;
D O I
10.1016/j.jfa.2014.03.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we obtain a new global gradient estimates in weighted Lorentz spaces for weak solutions of p(x)-Laplacian type equation with small BMO coefficients in a delta-Reifenberg flat domain. The modified Vitali covering lemma, the maximal function technique and the appropriate localization method are the main analytical tools. Our results improve the known results for such equations. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:605 / 642
页数:38
相关论文
共 50 条
  • [41] QUASILINEAR ELLIPTIC EQUATIONS WITH NATURAL GROWTH
    Abdellaoui, Boumediene
    Boccardo, Lucio
    Peral, Ireneo
    Primo, Ana
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2007, 20 (09) : 1005 - 1020
  • [42] Quasilinear elliptic equations at critical growth
    Gianni Arioli
    Filippo Gazzola
    Nonlinear Differential Equations and Applications NoDEA, 1998, 5 : 83 - 97
  • [43] Quasilinear elliptic equations with subquadratic growth
    Boccardo, Lucio
    Porzio, Maria Michaela
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 229 (01) : 367 - 388
  • [44] Quasilinear elliptic equations at critical growth
    Arioli, Gianni
    Gazzola, Filippo
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1998, 5 (01): : 83 - 97
  • [45] BMO Estimates for Quasilinear Elliptic Equations with BMO Coefficients
    Qiaoyu TIAN
    Shengzhi ZHANG
    Yonglin XU
    Jia MU
    JournalofMathematicalResearchwithApplications, 2016, 36 (06) : 673 - 681
  • [46] Potential estimates and Wiener criteria for quasilinear elliptic equations
    Maly, J
    XVITH ROLF NEVANLINNA COLLOQUIUM, 1996, : 119 - 133
  • [47] Estimates on the approximation of solutions to certain quasilinear elliptic equations
    Kuo, Tsang-Hai
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : E427 - E434
  • [48] Global bifurcation for quasilinear elliptic equations on RN
    Rabier, PJ
    Stuart, CA
    MATHEMATISCHE ZEITSCHRIFT, 2001, 237 (01) : 85 - 124
  • [49] Global gradient estimates for non-uniformly elliptic equations
    Byun, Sun-Sig
    Oh, Jehan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (02)
  • [50] Global gradient estimates for non-uniformly elliptic equations
    Sun-Sig Byun
    Jehan Oh
    Calculus of Variations and Partial Differential Equations, 2017, 56