Enhancing the thermal and economic performance of supercritical CO2 plant by waste heat recovery using an ejector refrigeration cycle

被引:43
|
作者
Mohammed, Ramy H. [1 ]
Qasem, Naef A. A. [2 ]
Zubair, Syed M. [3 ]
机构
[1] Zagazig Univ, Dept Mech Power Engn, Zagazig 44159, Egypt
[2] King Fahd Univ Petr & Minerals, Dept Aerosp Engn, Dhahran 31261, Saudi Arabia
[3] King Fahd Univ Petr & Minerals, Dept Mech Engn, Dhahran 31261, Saudi Arabia
关键词
Hybridization; Supercritical CO2; Ejector refrigeration; Sensitivity analysis; Economic analysis; Multi-objective optimization; POWER-GENERATION; EXERGY; OPTIMIZATION; WORKING; DESIGN; ENERGY; SYSTEM;
D O I
10.1016/j.enconman.2020.113340
中图分类号
O414.1 [热力学];
学科分类号
摘要
Supercritical CO2 cycle has an optimal performance when the cycle minimum temperature is around the critical temperature (31 degrees C), which is impossible at hot climatic conditions. To solve this problem, this work hybridizes a supercritical CO2 cycle with an ejector refrigeration cycle (ERC) to cool the minimum temperature of the cycle to be about 31 degrees C and hence achieving the highest possible performance. Comprehensive energy, exergy, and economic analyses are carried out to explore the mechanisms of performance improvement of the novel combined plant. Sensitivity analysis is performed to recognize the most influencing parameters on the performance of the combined plant. Based on the sensitivity analysis, the effect of different operating and design parameters on the system performance is investigated. Furthermore, a multi-objective optimization study is performed to find the trade-off between exergy efficiency and cost-saving. Among the different the five refrigerants used for ERC, the results illustrate that R717 is the most efficient one for the present hybridization. The exergy destruction in the precooler reduces from 15.5% to 0.7% when ERC is combined with the sCO(2) cycle. Thus, the energy efficiency (eta(th)) and exergy efficiency (eta(ex)) increase by 9.5%, while the levelized cost of energy (LCOE) declines by 10.7%. Compared with the standalone sCO(2) cycle, the produced power, eta(th), eta(ex), and LCOE of the optimized plant improve by 94.3%, 36.2%, 28.6%, and 18.3%, respectively.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Thermodynamic analysis of a combined supercritical CO2 and ejector expansion refrigeration cycle for engine waste heat recovery
    Pan, Mingzhang
    Bian, Xingyan
    Zhu, Yan
    Liang, Youcai
    Lu, Fulu
    Xiao, Gang
    ENERGY CONVERSION AND MANAGEMENT, 2020, 224
  • [2] Performance investigation of automobile waste heat recovery system for ejector refrigeration cycle
    Zhang, Hailun
    Wang, Lei
    Jia, Lei
    Wang, Xinli
    PROCEEDINGS OF THE 2018 13TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2018), 2018, : 400 - 405
  • [3] Thermo-economic evaluation of supercritical CO2 Brayton cycle integrated with absorption refrigeration system and organic Rankine cycle for waste heat recovery
    Mubashir, Wahab
    Adnan, Muhammad
    Zaman, Muhammad
    Imran, Muhammad
    Naqvi, Salman Raza
    Mehmood, Atif
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2023, 44
  • [4] Performance analysis and optimization of supercritical CO2 Brayton cycle waste heat recovery system
    Yu T.-F.
    Song L.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (02): : 404 - 414
  • [5] Proposal and evaluation of a combined refrigeration system for engine waste heat recovery based on a supercritical CO2 Brayton cycle
    Wu Z.
    Chen C.
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [6] Research on a Hybrid System Consisting of Supercritical CO2 Cycle and Transcritical Ejector Refrigeration Cycle
    Huang, Yu-Lei
    Zhu, Yin-Hai
    Jiang, Pei-Xue
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2019, 40 (11): : 2455 - 2460
  • [7] OPTIMIZATION OF SUPERCRITICAL CO2 CYCLE COMBINED WITH ORC FOR WASTE HEAT RECOVERY
    Carapellucci, Roberto
    Di Battista, Davide
    PROCEEDINGS OF ASME 2022 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2022, VOL 6, 2022,
  • [8] Performance characteristics of ejector expander transcritical CO2 refrigeration cycle
    Ersoy, H. Kursad
    Bilir, Nagihan
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2012, 226 (A5) : 623 - 635
  • [9] PERFORMANCE IMPROVEMENT OF A SUPERCRITICAL CO2 AND TRANSCRITICAL CO2 COMBINED CYCLE FOR OFFSHORE GAS TURBINE WASTE HEAT RECOVERY
    Zhou, Aozheng
    Ren, Xiaodong
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 11, 2020,
  • [10] Investigation of a refrigeration system based on combined supercritical CO2 power and transcritical CO2 refrigeration cycles by waste heat recovery of engine
    Liang, Youcai
    Sun, Zhili
    Dong, Meirong
    Lu, Jidong
    Yu, Zhibin
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2020, 118 : 470 - 482