OPTIMIZATION OF SUPERCRITICAL CO2 CYCLE COMBINED WITH ORC FOR WASTE HEAT RECOVERY

被引:0
|
作者
Carapellucci, Roberto [1 ]
Di Battista, Davide [1 ]
机构
[1] Univ Aquila, Laquila, Italy
关键词
waste heat recovery; energy efficiency; combined cycle; POWER-GENERATION; PURE FLUIDS; INTEGRATION; MIXTURES; SYSTEMS; UNITS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Waste heat recovery is a broadly considered opportunity for efficiency improvement in several energy consumption sectors, intending to reduce energy consumption and related carbon dioxide emissions to the atmosphere. The attention of research activities is focused on transportation and residential sectors, where the possible recovery is characterized by low enthalpy, but with a wider potential market. Therefore, the maximization of recovery is one of the principal aims of this option, and different kinds of technologies have been proposed in this regard. Thermodynamic cycles, which exploit the waste heat considering it as the upper thermal source, seem to be a promising option, and the possibility to combine two different cycles can increase the thermal power harvested. In this paper, a combination of a supercritical CO2 Brayton cycle with an ORC-based unit has been proposed to recover waste heat from the exhaust gases of an internal combustion engine for the transportation sector. Using CO2 as working fluid is under investigation in literature, for its low Global Warming Potential and its suitable thermodynamic characteristics in dense phase (just above the critical point). An Organic Rankine Cycle (ORC), then, has been bottomed to the CO2 section, to further recover thermal energy and convert it into mechanical useful work. Indeed, the CO2 cycle must have a lower temperature cold sink, where thermal power can be furtherly recovered. The introduction of this second stage of recovery interacts with the upper one, modifying the overall optimization parameters. Hence, this work aims to find the maximization of the recovery from a global point-of-view, identifying possible trade-offs happenings between the two recovery sections. Minimum sCO(2) pressure, stack exhaust temperature, and the possibility to have a regeneration stage have been considered as optimizing parameters. Finally, the optimized system has been applied to a specific mission profile of a commercial vehicle, in order to evaluate the recovery potential during a realistic engine working points sequence. A recovery higher than 4% in every mission considered has been achieved, with values up to 7% in motorway and long-hauling conditions.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study
    Wang, Xurong
    Dai, Yiping
    APPLIED ENERGY, 2016, 170 : 193 - 207
  • [2] Performance analysis and optimization of supercritical CO2 Brayton cycle waste heat recovery system
    Yu T.-F.
    Song L.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (02): : 404 - 414
  • [3] Supercritical CO2 Cycle System Optimization of Marine Diesel Engine Waste Heat Recovery
    Hou, Shengya
    Zhang, Wenping
    Zeng, Ziwei
    Ji, Jiachen
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY, ENVIRONMENT AND CHEMICAL ENGINEERING, 2015, 23 : 178 - 183
  • [4] Optimization of the combined supercritical CO2 cycle and organic Rankine cycle using zeotropic mixtures for gas turbine waste heat recovery
    Hou, Shengya
    Zhou, Yaodong
    Yu, Lijun
    Zhang, Fengyuan
    Cao, Sheng
    ENERGY CONVERSION AND MANAGEMENT, 2018, 160 : 313 - 325
  • [5] Comparative analysis of supercritical CO2-ORC combined cycle for gas turbine waste heat recovery based on multi-objective optimization
    Hou, Shengya
    Zhang, Fengyuan
    Yang, Qiguo
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [6] Thermodynamic analysis and multi-objective optimization of a waste heat recovery system with a combined supercritical/transcritical CO2 cycle
    Qin, Lei
    Xie, Gongnan
    Ma, Yuan
    Li, Shulei
    ENERGY, 2023, 265
  • [7] PERFORMANCE IMPROVEMENT OF A SUPERCRITICAL CO2 AND TRANSCRITICAL CO2 COMBINED CYCLE FOR OFFSHORE GAS TURBINE WASTE HEAT RECOVERY
    Zhou, Aozheng
    Ren, Xiaodong
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 11, 2020,
  • [8] Parametric optimisation of a combined supercritical CO2 (S-CO2) cycle and organic Rankine cycle (ORC) system for internal combustion engine (ICE) waste-heat recovery
    Song, Jian
    Li, Xiaoya
    Wang, Kai
    Markides, Christos N.
    ENERGY CONVERSION AND MANAGEMENT, 2020, 218
  • [9] Parametric optimisation of a combined supercritical CO2 (S-CO2) cycle and organic Rankine cycle (ORC) system for internal combustion engine (ICE) waste-heat recovery
    Clean Energy Processes Laboratory, Department of Chemical Engineering, Imperial College London, London
    SW7 2AZ, United Kingdom
    不详
    300072, China
    不详
    310027, China
    Energy Convers. Manage.,
  • [10] Improvement design and analysis of a supercritical CO2/transcritical CO2 combined cycle for offshore gas turbine waste heat recovery
    Zhou, Aozheng
    Li, Xue-song
    Ren, Xiao-dong
    Gu, Chun-wei
    ENERGY, 2020, 210