Multi-metal, Multi-wavelength Surface-Enhanced Raman Spectroscopy Detection of Neurotransmitters

被引:72
|
作者
Moody, Amber S. [1 ]
Sharma, Bhavya [1 ]
机构
[1] Univ Tennessee, Dept Chem, 1420 Circle Dr, Knoxville, TN 37996 USA
来源
ACS CHEMICAL NEUROSCIENCE | 2018年 / 9卷 / 06期
关键词
surface enhanced Raman spectroscopy (SERS); Raman spectroscopy; neurotransmitters; neurological disease; SCATTERING NIR-SERS; EXCITATION SPECTROSCOPY; FLUORESCENCE DETECTION; LIQUID-CHROMATOGRAPHY; COLLOIDAL SILVER; AMINO-ACIDS; RAT-BRAIN; GOLD; DOPAMINE; HPLC;
D O I
10.1021/acschemneuro.8b00020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The development of a sensor for the rapid and sensitive detection of neurotransmitters could provide a pathway for the diagnosis of neurological diseases, leading to the discovery of more effective treatment methods. We investigate the use of surface enhanced Raman spectroscopy (SERS) based sensors for the rapid detection of melatonin, serotonin, glutamate, dopamine, GABA, norepinephrine, and epinephrine. Previous studies have demonstrated SERS detection of neurotransmitters; however, there has been no comprehensive study on the effect of the metal used as the SERS substrate or the excitation wavelength used for detection. Here, we present the detection of 7 neurotransmitters using both silver and gold nanoparticles at excitation wavelengths of 532, 633, and 785 nm. Over the range of wavelengths investigated, the SERS enhancement on the silver and gold nanoparticles varies, with an average enhancement factor of 10(5)-10(6). The maximum SERS enhancement occurs at an excitation wavelength of 785 nm for the gold nanoparticles and at 633 nm for the silver nanoparticles.
引用
收藏
页码:1380 / 1387
页数:15
相关论文
共 50 条
  • [21] Applications of surface-enhanced Raman spectroscopy in environmental detection
    Terry, Lynn R.
    Sanders, Sage
    Potoff, Rebecca H.
    Kruel, JacobW.
    Jain, Manan
    Guo, Huiyuan
    ANALYTICAL SCIENCE ADVANCES, 2022, 3 (3-4): : 113 - 145
  • [22] Ultrasensitive detection of malondialdehyde with surface-enhanced Raman spectroscopy
    Zhang, Dongmao
    Haputhanthri, Rukshani
    Ansar, Siyam M.
    Vangala, Karthikeshwar
    De Silva, Hondamuni I.
    Sygula, Andrzej
    Saebo, Svein
    Pittman, Charles U., Jr.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 398 (7-8) : 3193 - 3201
  • [23] An enhanced inheritance algorithm for optimization of multi-wavelength fiber Raman amplifier
    Huang, JF
    Wu, JX
    PASSIVE COMPONENTS AND FIBER-BASED DEVICES, PTS 1 AND 2, 2005, 5623 : 727 - 735
  • [24] Human metabolite detection by surface-enhanced Raman spectroscopy
    Lu, Yao
    Lin, Li
    Ye, Jian
    MATERIALS TODAY BIO, 2022, 13
  • [25] Ultrasensitive detection of malondialdehyde with surface-enhanced Raman spectroscopy
    Dongmao Zhang
    Rukshani Haputhanthri
    Siyam M. Ansar
    Karthikeshwar Vangala
    Hondamuni I. De Silva
    Andrzej Sygula
    Svein Saebo
    Charles U. Pittman
    Analytical and Bioanalytical Chemistry, 2010, 398 : 3193 - 3201
  • [26] Detection of explosives based on surface-enhanced Raman spectroscopy
    Wackerbarth, Hainer
    Salb, Christian
    Gundrum, Lars
    Niederkrueger, Matthias
    Christou, Konstantin
    Beushausen, Volker
    Vioel, Wolfgang
    APPLIED OPTICS, 2010, 49 (23) : 4362 - 4366
  • [27] Surface-enhanced Raman spectroscopy
    Nature Reviews Methods Primers, 1
  • [28] Surface-enhanced Raman Spectroscopy
    Tomoaki Nishino
    Analytical Sciences, 2018, 34 : 1061 - 1062
  • [29] Surface-enhanced Raman spectroscopy
    Jürgen Popp
    Thomas Mayerhöfer
    Analytical and Bioanalytical Chemistry, 2009, 394 : 1717 - 1718
  • [30] Surface-Enhanced Raman Spectroscopy
    Stiles, Paul. L.
    Dieringer, Jon A.
    Shah, Nilain C.
    Van Duyne, Richard R.
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, 2008, 1 (601-626) : 601 - 626