Testing independence and goodness-of-fit in linear models

被引:32
|
作者
Sen, A. [1 ]
Sen, B. [2 ]
机构
[1] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
[2] Columbia Univ, Dept Stat, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Bootstrap; Goodness-of-fit test; Linear regression; Model checking; Reproducing kernel Hilbert space; Test of independence; NONPARAMETRIC REGRESSION; DISTANCE COVARIANCE; CHECKS; HETEROSCEDASTICITY; HYPOTHESIS; DEPENDENCE;
D O I
10.1093/biomet/asu026
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider a linear regression model and propose an omnibus test to simultaneously check the assumption of independence between the error and predictor variables and the goodness-of-fit of the parametric model. Our approach is based on testing for independence between the predictor and the residual obtained from the parametric fit by using the Hilbert-Schmidt independence criterion (Gretton et al., 2008). The proposed method requires no user-defined regularization, is simple to compute based on only pairwise distances between points in the sample, and is consistent against all alternatives. We develop distribution theory for the proposed test statistic, under both the null and the alternative hypotheses, and devise a bootstrap scheme to approximate its null distribution. We prove the consistency of the bootstrap scheme. A simulation study shows that our method has better power than its main competitors. Two real datasets are analysed to demonstrate the scope and usefulness of our method.
引用
收藏
页码:927 / 942
页数:16
相关论文
共 50 条
  • [41] Testing goodness-of-fit with interval data
    Vozhov, Stanislav S.
    Chimitova, Ekaterina V.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2016, 34 (01): : 35 - 42
  • [42] Order statistics in goodness-of-fit testing
    Glen, AG
    Leemis, LM
    Barr, DR
    IEEE TRANSACTIONS ON RELIABILITY, 2001, 50 (02) : 209 - 213
  • [43] Power maps in goodness-of-fit testing
    Fischer, T.
    Kamps, U.
    COMPUTATIONAL STATISTICS, 2013, 28 (03) : 1365 - 1382
  • [44] Goodness-of-fit testing: the thresholding approach
    Kim, Min Hee
    Akritas, Michael G.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (01) : 119 - 138
  • [45] Minimax nonparametric goodness-of-fit testing
    Ingster, YI
    Suslina, IA
    FOUNDATIONS OF STATISTICAL INFERENCE, 2003, : 141 - 152
  • [46] Goodness-of-fit testing for fractional diffusions
    Podolskij M.
    Wasmuth K.
    Statistical Inference for Stochastic Processes, 2013, 16 (2) : 147 - 159
  • [47] Power maps in goodness-of-fit testing
    T. Fischer
    U. Kamps
    Computational Statistics, 2013, 28 : 1365 - 1382
  • [48] Comments on: Goodness-of-fit tests in mixed modes Smooth tests of goodness-of-fit for the random effects distribution in linear mixed models
    Thas, Olivier
    TEST, 2009, 18 (02) : 260 - 264
  • [49] TESTING PROCEDURES BASED ON THE EMPIRICAL CHARACTERISTIC FUNCTIONS I: GOODNESS-OF-FIT, TESTING FOR SYMMETRY AND INDEPENDENCE
    Huskova, Marie
    Meintanis, Simos G.
    PROBASTAT '06, 2008, 39 : 225 - +
  • [50] Goodness-of-fit tests for mixed models
    Ritz, C
    SCANDINAVIAN JOURNAL OF STATISTICS, 2004, 31 (03) : 443 - 458