THE RADIO LUMINOSITY FUNCTION AND GALAXY EVOLUTION IN THE COMA CLUSTER

被引:21
|
作者
Miller, Neal A. [1 ]
Hornschemeier, Ann E. [1 ,2 ]
Mobasher, Bahram [3 ]
Bridges, Terry J. [4 ,5 ]
Hudson, Michael J. [6 ]
Marzke, Ronald O. [7 ]
Smith, Russell J. [8 ]
机构
[1] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[2] NASA, Goddard Space Flight Ctr, Lab Xray Astrophys, Greenbelt, MD 20771 USA
[3] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
[4] Anglo Australian Observ, Epping, NSW 1710, Australia
[5] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada
[6] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[7] San Francisco State Univ, Dept Phys & Astron, San Francisco, CA 94132 USA
[8] Univ Durham, Dept Phys, Durham DH1 3LE, England
来源
ASTRONOMICAL JOURNAL | 2009年 / 137卷 / 05期
关键词
galaxies: clusters: individual (Abell 1656); galaxies: evolution; galaxies: luminosity function; mass function; radio continuum: galaxies; DIGITAL SKY SURVEY; MORPHOLOGY-DENSITY RELATION; STAR-FORMATION HISTORIES; COLOR-MAGNITUDE DIAGRAM; ACTIVE GALACTIC NUCLEI; LOCAL UNIVERSE; GIANT GALAXIES; DATA RELEASE; INFRARED-EMISSION; DISTANT CLUSTERS;
D O I
10.1088/0004-6256/137/5/4450
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the radio luminosity function and radio source population for two fields within the Coma cluster of galaxies, with the fields centered on the cluster core and southwest infall region and each covering about half a square degree. Using VLA data with a typical rms sensitivity of 28 mu Jy per 4 ''.4 beam, we identify 249 radio sources with optical counterparts brighter than r = 22. For cluster galaxies, these correspond to L-1.4 = 1.7 x 10(20) W Hz(-1)(for a 5 sigma source) and M-r = -13. Comprehensive optical spectroscopy identifies 38 of these as members of the Coma cluster, evenly split between sources powered by an active nucleus and sources powered by active star formation. The radio-detected star-forming galaxies are the dominant population only at radio luminosities between about 10(21) and 10(22) WHz(-1), an interesting result given star formation dominates field radio luminosity functions for all luminosities lower than about 10(23) W Hz(-1). The majority of the radio-detected star-forming galaxies have characteristics of starbursts, including high specific star formation rates and optical spectra with strong emission lines. In conjunction with prior studies on post-starburst galaxies within the Coma cluster, this is consistent with a picture in which late-type galaxies entering Coma undergo a starburst prior to a rapid cessation of star formation. Optically bright elliptical galaxies (M-r <= -20.5) make the largest contribution to the radio luminosity function at both the high (greater than or similar to 3 x 10(22) WHz(-1)) and low (less than or similar to 10(21) WHz(-1)) ends. Through a stacking analysis of these optically bright ellipticals we find that they continue to harbor radio sources down to luminosities as faint as 3 x 10(19) W Hz(-1). However, contrary to published results for the Virgo cluster we find no evidence for the existence of a population of optically faint (M-r approximate to -14) dwarf ellipticals hosting strong radio AGNs.
引用
收藏
页码:4450 / 4467
页数:18
相关论文
共 50 条
  • [31] The radio luminosity function of the NEP distant cluster radio galaxies
    Branchesi, M.
    Gioia, I.M.
    Fanti, C.
    Fanti, R.
    Perley, R.
    Astronomy and Astrophysics, 1600, 446 (01): : 97 - 111
  • [32] The radio luminosity function of the NEP distant cluster radio galaxies
    Branchesi, M
    Gioia, IM
    Fanti, C
    Fanti, R
    Perley, R
    ASTRONOMY & ASTROPHYSICS, 2006, 446 (01) : 97 - U20
  • [33] The WARPS Survey - VIII. Evolution of the galaxy cluster X-ray Luminosity Function
    Koens, L. A.
    Maughan, B. J.
    Jones, L. R.
    Ebeling, H.
    Horner, D. J.
    Perlman, E. S.
    Phillipps, S.
    Scharf, C. A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 435 (04) : 3231 - 3242
  • [34] Evolution of the cluster optical galaxy luminosity function in the CFHTLS: breaking the degeneracy between mass and redshift
    Sarron, F.
    Martinet, N.
    Durret, F.
    Adami, C.
    ASTRONOMY & ASTROPHYSICS, 2018, 613
  • [35] Binary aggregations in hierarchical galaxy formation: The evolution of the galaxy luminosity function
    Menci, N
    Cavaliere, A
    Fontana, A
    Giallongo, E
    Poli, F
    ASTROPHYSICAL JOURNAL, 2002, 575 (01): : 18 - 32
  • [36] THE GALAXY OPTICAL LUMINOSITY FUNCTION FROM THE AGN AND GALAXY EVOLUTION SURVEY
    Cool, Richard J.
    Eisenstein, Daniel J.
    Kochanek, Christopher S.
    Brown, Michael J. I.
    Caldwell, Nelson
    Dey, Arjun
    Forman, William R.
    Hickox, Ryan C.
    Jannuzi, Buell T.
    Jones, Christine
    Moustakas, John
    Murray, Stephen S.
    ASTROPHYSICAL JOURNAL, 2012, 748 (01):
  • [37] EVOLUTION OF GALAXY LUMINOSITY FUNCTION USING PHOTOMETRIC REDSHIFTS
    Ramos, B. H. F.
    Pellegrini, P. S.
    Benoist, C.
    da Costa, L. N.
    Maia, M. A. G.
    Makler, M.
    Ogando, R. L. C.
    de Simoni, F.
    Mesquita, A. A.
    ASTRONOMICAL JOURNAL, 2011, 142 (02):
  • [38] A new method to measure evolution of the galaxy luminosity function
    Dye, S.
    Eales, S. A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 405 (04) : 2406 - 2418
  • [39] Evolution of the galaxy luminosity function in progenitors of fossil groups
    Gozaliasl, G.
    Khosroshahi, H. G.
    Dariush, A. A.
    Finoguenov, A.
    Jassur, D. M. Z.
    Molaeinezhad, A.
    ASTRONOMY & ASTROPHYSICS, 2014, 571
  • [40] Galaxy and Mass Assembly (GAMA): luminosity function evolution
    Loveday, Jon
    STATISTICAL CHALLENGES IN 21ST CENTURY COSMOLOGY, 2015, 10 (306): : 40 - 44