THE R-JACOBI-STIRLING NUMBERS OF THE SECOND KIND

被引:2
|
作者
Mihoubi, Miloud [1 ]
Rahim, Asmaa [1 ]
机构
[1] USTHB, Fac Math, RECITS Lab, POB 32 El Alia, Algiers 16111, Algeria
关键词
the r-Jacobi-Stirling of the second kind; generating function; recurrence relations; log-concavity;
D O I
10.18514/MMN.2017.1481
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the r-Jacobi-Stirling numbers of the second kind introduced by Gelineau in his Phd thesis. We give, upon using combinatorial and analytic arguments, the ordinary generating function of these numbers, two recurrence relations, their exact expressions and the log-concavity.
引用
收藏
页码:947 / 955
页数:9
相关论文
共 50 条
  • [11] Some identities on λ-analogues of r-Stirling numbers of the second kind
    Kim, Dae San
    Kim, Hye Kyung
    Kim, Taekyun
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (03): : 1054 - 1066
  • [12] Study on r-truncated degenerate Stirling numbers of the second kind
    Kim, Taekyun
    Kim, Dae San
    Kim, Hyekyung
    OPEN MATHEMATICS, 2022, 20 (01): : 1685 - 1695
  • [13] ON THE UNIFORMITY OF THE APPROXIMATION FOR r-ASSOCIATED STIRLING NUMBERS OF THE SECOND KIND
    Connamacher, Harold
    Dobrosotskaya, Julia
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2020, 15 (03) : 25 - 42
  • [14] Stirling numbers of the second kind and Bell numbers for graphs
    Kereskenyi-Balogh, Zsofia
    Nyul, Gabor
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 58 : 264 - 274
  • [15] Enumerating Some Stable Partitions Involving Stirling and r-Stirling Numbers of the Second Kind
    Belbachir, H.
    Boutiche, M. A.
    Medjerredine, A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (03)
  • [16] Enumerating Some Stable Partitions Involving Stirling and r-Stirling Numbers of the Second Kind
    H. Belbachir
    M. A. Boutiche
    A. Medjerredine
    Mediterranean Journal of Mathematics, 2018, 15
  • [17] Asymptotics of Stirling and Chebyshev-Stirling Numbers of the Second Kind
    Gawronski, Wolfgang
    Littlejohn, Lance L.
    Neuschel, Thorsten
    STUDIES IN APPLIED MATHEMATICS, 2014, 133 (01) : 1 - 17
  • [18] On equal values of Stirling numbers of the second kind
    Ferenczik, J.
    Pinter, A.
    Porvazsnyik, B.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) : 980 - 984
  • [19] Probabilistic Stirling Numbers of the Second Kind and Applications
    José A. Adell
    Journal of Theoretical Probability, 2022, 35 : 636 - 652
  • [20] Simple Formulas for Stirling Numbers of the Second Kind
    Low, A. A.
    Ho, C. K.
    INNOVATION AND ANALYTICS CONFERENCE AND EXHIBITION (IACE 2015), 2015, 1691