Cantor and Set Theory

被引:0
|
作者
Patras, Frederic [1 ]
机构
[1] Univ Cote Azur, CNRS, Nice, France
来源
ESSENCE OF NUMBERS | 2020年 / 2278卷
关键词
D O I
10.1007/978-3-030-56700-2_9
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
引用
收藏
页码:91 / 99
页数:9
相关论文
共 50 条
  • [1] CANTOR IAN SET THEORY
    Oliver, Alex
    Smiley, Timothy
    BULLETIN OF SYMBOLIC LOGIC, 2018, 24 (04) : 393 - 451
  • [2] A theological substantiation of Cantor's set theory
    Trlifajová, K
    FILOSOFICKY CASOPIS, 2005, 53 (02): : 195 - 218
  • [3] Cantor Paradoxes, Possible Worlds and Set Theory
    Uso-Domenech, Jose-Luis
    Nescolarde-Selva, Josue-Antonio
    Segura-Abad, Lorena
    Gash, Hugh
    Alonso-Stenberg, Kristian
    MATHEMATICS, 2019, 7 (07)
  • [4] PROBLEM OF LOGICAL ANTINOMY IN CANTOR SET THEORY
    HEITSCH, W
    DEUTSCHE ZEITSCHRIFT FUR PHILOSOPHIE, 1969, 17 (02): : 182 - 193
  • [5] On arithmetic in the Cantor-Lukasiewicz fuzzy set theory
    Hájek, P
    ARCHIVE FOR MATHEMATICAL LOGIC, 2005, 44 (06) : 763 - 782
  • [6] POTENTIAL-THEORY AND ANALYTIC PROPERTIES OF A CANTOR SET
    DETTMANN, CP
    FRANKEL, NE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (05): : 1009 - 1022
  • [7] On arithmetic in the Cantor- Łukasiewicz fuzzy set theory
    Petr Hájek
    Archive for Mathematical Logic, 2005, 44 : 763 - 782
  • [8] DESCRIPTIVE SET THEORY, FROM CANTOR TO WADGE AND BEYOND
    Camerlo, Riccardo
    REAL ANALYSIS EXCHANGE, 2022, 47 (01) : 1 - 24
  • [9] CANTOR-VON NEUMANN SET-THEORY
    Muller, F. A.
    LOGIQUE ET ANALYSE, 2011, (213) : 31 - 48
  • [10] The basic principles of the Cantor-Zermelo set theory
    Fraenkel, A
    MATHEMATISCHE ANNALEN, 1922, 86 : 230 - 237