CANTOR IAN SET THEORY

被引:1
|
作者
Oliver, Alex [1 ]
Smiley, Timothy [2 ]
机构
[1] Univ Cambridge, Gonville & Caius Coll, Cambridge CB2 1TA, England
[2] Univ Cambridge, Clare Coll, Cambridge CB2 1TL, England
关键词
arithmetization of analysis; Axiom of Plurality; empty set; level; ordered pair; singleton; Singular Logic; Cantor; Scott;
D O I
10.1017/bsl.2018.10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Almost all set theorists pay at least lip service to Cantor's definition of a set as a collection of many things into one whole; but empty and singleton sets do not fit with it. Adapting Dana Scott's axiomatization of the cumulative theory of types, we present a 'Cantorian' system which excludes these anomalous sets. We investigate the consequences of their omission, examining their claim to a place on grounds of convenience, and asking whether their absence is an obstacle to the theory's ability to represent ordered pairs or to support the arithmetization of analysis or the development of the theory of cardinals and ordinals.
引用
收藏
页码:393 / 451
页数:59
相关论文
共 50 条
  • [1] Cantor and Set Theory
    Patras, Frederic
    ESSENCE OF NUMBERS, 2020, 2278 : 91 - 99
  • [2] A theological substantiation of Cantor's set theory
    Trlifajová, K
    FILOSOFICKY CASOPIS, 2005, 53 (02): : 195 - 218
  • [3] Cantor Paradoxes, Possible Worlds and Set Theory
    Uso-Domenech, Jose-Luis
    Nescolarde-Selva, Josue-Antonio
    Segura-Abad, Lorena
    Gash, Hugh
    Alonso-Stenberg, Kristian
    MATHEMATICS, 2019, 7 (07)
  • [4] PROBLEM OF LOGICAL ANTINOMY IN CANTOR SET THEORY
    HEITSCH, W
    DEUTSCHE ZEITSCHRIFT FUR PHILOSOPHIE, 1969, 17 (02): : 182 - 193
  • [5] On arithmetic in the Cantor-Lukasiewicz fuzzy set theory
    Hájek, P
    ARCHIVE FOR MATHEMATICAL LOGIC, 2005, 44 (06) : 763 - 782
  • [6] POTENTIAL-THEORY AND ANALYTIC PROPERTIES OF A CANTOR SET
    DETTMANN, CP
    FRANKEL, NE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (05): : 1009 - 1022
  • [7] On arithmetic in the Cantor- Łukasiewicz fuzzy set theory
    Petr Hájek
    Archive for Mathematical Logic, 2005, 44 : 763 - 782
  • [8] DESCRIPTIVE SET THEORY, FROM CANTOR TO WADGE AND BEYOND
    Camerlo, Riccardo
    REAL ANALYSIS EXCHANGE, 2022, 47 (01) : 1 - 24
  • [9] CANTOR-VON NEUMANN SET-THEORY
    Muller, F. A.
    LOGIQUE ET ANALYSE, 2011, (213) : 31 - 48
  • [10] The basic principles of the Cantor-Zermelo set theory
    Fraenkel, A
    MATHEMATISCHE ANNALEN, 1922, 86 : 230 - 237