HIGH ORDER WELL-BALANCED SCHEMES BASED ON NUMERICAL RECONSTRUCTION OF THE EQUILIBRIUM VARIABLES

被引:12
|
作者
Russo, G. [1 ]
Khe, A. [2 ]
机构
[1] Univ Catania, Dept Math & Comp Sci, I-95125 Catania, Italy
[2] Lavrentyev Inst Hydrodynam, Novosibirsk 630090, Russia
关键词
Well-balanced schemes; Numerical reconstruction; High order methods; VOLUME WENO SCHEMES; HYPERBOLIC SYSTEMS; SOURCE TERMS;
D O I
10.1142/9789814317429_0032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we deal with the problem of construction of well-balanced schemes for hyperbolic systems of balance laws. A method based on two sets of variables (conservative and equilibrium ones) is considered.(6) We propose a method for reconstruction of the equilibrium variables when the analytical mapping between the equilibrium variables and conservative ones is unknown. For model scalar equation well-balanced schemes of up to the fourth order are constructed. Numerical results shows the well-balanced properties and high order resolution of the schemes.
引用
收藏
页码:230 / 241
页数:12
相关论文
共 50 条
  • [21] Well-Balanced Numerical Schemes for Shallow Water Equations with Horizontal Temperature Gradient
    Mai Duc Thanh
    Nguyen Xuan Thanh
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 783 - 807
  • [22] Well-balanced Schemes for Gravitationally Stratified Media
    Kaeppeli, Roger
    Mishra, Siddhartha
    NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2014, 2015, 498 : 210 - 215
  • [23] A nonconservative numerical approach for hyperbolic systems with source terms: The Well-Balanced schemes
    Gosse, L
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOLS I AND II, 2001, 140 : 453 - 461
  • [24] Well-Balanced Numerical Schemes for Shallow Water Equations with Horizontal Temperature Gradient
    Mai Duc Thanh
    Nguyen Xuan Thanh
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 783 - 807
  • [25] A VERY EASY HIGH-ORDER WELL-BALANCED RECONSTRUCTION FOR HYPERBOLIC SYSTEMS WITH SOURCE TERMS
    Berthon, Christophe
    Bulteau, Solene
    Foucher, Francoise
    M'Baye, Meissa
    Michel-Dansac, Victor
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (04): : A2506 - A2535
  • [26] High order well-balanced finite volume schemes for simulating wave propagation in stratified magnetic atmospheres
    Fuchs, F. G.
    McMurry, A. D.
    Mishra, S.
    Risebro, N. H.
    Waagan, K.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (11) : 4033 - 4058
  • [27] High order well-balanced scheme for river flow modeling
    Brandner, Marek
    Egermaier, Jiri
    Kopincova, Hana
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (10) : 1773 - 1787
  • [28] Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows
    Noelle, S
    Pankratz, N
    Puppo, G
    Natvig, JR
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 213 (02) : 474 - 499
  • [29] HIGH-ORDER WELL-BALANCED FINITE-VOLUME SCHEMES FOR HYDRODYNAMIC EQUATIONS WITH NONLOCAL FREE ENERGY
    Carrillo, Jose A.
    Castro, Manuel J.
    Kalliadasis, Serafim
    Perez, Sergio P.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02): : A828 - A858
  • [30] High-Order Well-Balanced Finite Difference WENO Schemes for a Class of Hyperbolic Systems with Source Terms
    Yulong Xing
    Chi-Wang Shu
    Journal of Scientific Computing, 2006, 27 : 477 - 494