HIGH ORDER WELL-BALANCED SCHEMES BASED ON NUMERICAL RECONSTRUCTION OF THE EQUILIBRIUM VARIABLES

被引:12
|
作者
Russo, G. [1 ]
Khe, A. [2 ]
机构
[1] Univ Catania, Dept Math & Comp Sci, I-95125 Catania, Italy
[2] Lavrentyev Inst Hydrodynam, Novosibirsk 630090, Russia
关键词
Well-balanced schemes; Numerical reconstruction; High order methods; VOLUME WENO SCHEMES; HYPERBOLIC SYSTEMS; SOURCE TERMS;
D O I
10.1142/9789814317429_0032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we deal with the problem of construction of well-balanced schemes for hyperbolic systems of balance laws. A method based on two sets of variables (conservative and equilibrium ones) is considered.(6) We propose a method for reconstruction of the equilibrium variables when the analytical mapping between the equilibrium variables and conservative ones is unknown. For model scalar equation well-balanced schemes of up to the fourth order are constructed. Numerical results shows the well-balanced properties and high order resolution of the schemes.
引用
收藏
页码:230 / 241
页数:12
相关论文
共 50 条
  • [1] Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique
    Castro, Manuel J.
    Milanes, Alberto Pardo
    Pares, Carlos
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (12): : 2055 - 2113
  • [2] High-order well-balanced schemes and applications to non-equilibrium flow
    Wang, Wei
    Shu, Chi-Wang
    Yee, H. C.
    Sjoegreen, Bjoern
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (18) : 6682 - 6702
  • [3] Construction of low dissipative high-order well-balanced filter schemes for non-equilibrium flows
    Wang, Wei
    Yee, H. C.
    Sjoegreen, Bjoern
    Magin, Thierry
    Shu, Chi-Wang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (11) : 4316 - 4335
  • [4] High-order well-balanced finite-volume schemes for barotropic flows: Development and numerical comparisons
    Pankratz, Normann
    Natvig, Jostein R.
    Gjevik, Bjorn
    Noelle, Sebastian
    OCEAN MODELLING, 2007, 18 (01) : 53 - 79
  • [5] Third- and fourth-order well-balanced schemes for the shallow water equations based on the CWENO reconstruction
    Castro, Manuel J.
    Semplice, Matteo
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2019, 89 (08) : 304 - 325
  • [6] High-Order Well-Balanced Finite Volume WENO Schemes with Conservative Variables Decomposition for Shallow Water Equations
    Li, Jiaojiao
    Li, Gang
    Qian, Shouguo
    Gao, Jinmei
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2021, 13 (04) : 827 - 849
  • [7] High-order well-balanced finite volume schemes for the Euler equations with gravitation
    Grosheintz-Laval, L.
    Kappeli, R.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 378 : 324 - 343
  • [8] High Order Well-Balanced Weighted Compact Nonlinear Schemes for Shallow Water Equations
    Gao, Zhen
    Hu, Guanghui
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 22 (04) : 1049 - 1068
  • [9] High order exactly well-balanced numerical methods for shallow water systems
    Castro Diaz, M. J.
    Lopez-Garcia, J. A.
    Pares, Carlos
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 246 : 242 - 264
  • [10] Capturing Near-Equilibrium Solutions: A Comparison between High-Order Discontinuous Galerkin Methods and Well-Balanced Schemes
    Veiga, Maria Han
    Velasco-Romero, David A.
    Abgrall, Remi
    Teyssier, Romain
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (01) : 1 - 34