Solving fractional integral equations by the Haar wavelet method

被引:118
|
作者
Lepik, Ue. [1 ]
机构
[1] Univ Tartu, Dept Appl Math, EE-50409 Tartu, Estonia
关键词
Fractional calculus; Haar wavelets; Integral equations; Fractional vibrations; NUMERICAL-SOLUTION; DYNAMICS;
D O I
10.1016/j.amc.2009.04.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Haar wavelets for the solution of fractional integral equations are applied. Fractional Volterra and Fredholm integral equations are considered. The proposed method also is used for analysing fractional harmonic vibrations. The efficiency of the method is demonstrated by three numerical examples. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:468 / 478
页数:11
相关论文
共 50 条
  • [11] The use of rationalized Haar wavelet collocation method for solving optimal control of Volterra integral equations
    Maleknejad, Khosrow
    Ebrahimzadeh, Asyieh
    JOURNAL OF VIBRATION AND CONTROL, 2015, 21 (10) : 1958 - 1967
  • [12] A new method for solving three-dimensional nonlinear Fredholm integral equations by Haar wavelet
    Kazemi, Manochehr
    Torkashvand, Vali
    Ezzati, Reza
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 115 - +
  • [13] Haar wavelet method for solving some nonlinear Parabolic equations
    Hariharan, G.
    Kannan, K.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 48 (04) : 1044 - 1061
  • [14] Haar wavelet method for solving some nonlinear Parabolic equations
    G. Hariharan
    K. Kannan
    Journal of Mathematical Chemistry, 2010, 48 : 1044 - 1061
  • [15] Application of Haar Wavelet Method for Solving Nonlinear Evolution Equations
    Ratas, Mart
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [16] ψ-Haar wavelets method for numerically solving fractional differential equations
    Ali, Amjid
    Minamoto, Teruya
    Saeed, Umer
    Rehman, Mujeeb Ur
    ENGINEERING COMPUTATIONS, 2021, 38 (02) : 1037 - 1056
  • [17] The Chebyshev wavelet method for solving fractional integral and differential equations of bratu-type
    Chen, Yiming
    Sun, Lu
    Liu, Lili
    Xie, Jiaquan
    Journal of Computational Information Systems, 2013, 9 (14): : 5601 - 5609
  • [18] A NEW METHOD FOR SOLVING FRACTIONAL INTEGRAL EQUATIONS
    Torabi, Parvin
    Kasiri, Hossein
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2018, 19 (04): : 359 - 367
  • [19] Weak formulation based Haar wavelet method for solving differential equations
    Majak, Juri
    Pohlak, Meelis
    Eerme, Martin
    Lepikult, Toomas
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 211 (02) : 488 - 494
  • [20] Solving Ordinary Differential Equations with Higher Order Haar Wavelet Method
    Majak, Juri
    Pohlak, Meelis
    Eerme, Martin
    Shvartsman, Boris
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116