Deep Learning-Based Portable Device for Audio Distress Signal Recognition in Urban Areas

被引:6
|
作者
Felipe Gaviria, Jorge [1 ]
Escalante-Perez, Alejandra [1 ]
Camilo Castiblanco, Juan [1 ]
Vergara, Nicolas [1 ]
Parra-Garces, Valentina [1 ]
David Serrano, Juan [1 ]
Felipe Zambrano, Andres [1 ]
Felipe Giraldo, Luis [1 ]
机构
[1] Univ Los Andes, Dept Elect & Elect Engn, Bogota 111711, DC, Colombia
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 21期
关键词
acoustic signal processing; smart cities; convolutional neural network; raspberry Pi; deep learning;
D O I
10.3390/app10217448
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Real-time automatic identification of audio distress signals in urban areas is a task that in a smart city can improve response times in emergency alert systems. The main challenge in this problem lies in finding a model that is able to accurately recognize these type of signals in the presence of background noise and allows for real-time processing. In this paper, we present the design of a portable and low-cost device for accurate audio distress signal recognition in real urban scenarios based on deep learning models. As real audio distress recordings in urban areas have not been collected and made publicly available so far, we first constructed a database where audios were recorded in urban areas using a low-cost microphone. Using this database, we trained a deep multi-headed 2D convolutional neural network that processed temporal and frequency features to accurately recognize audio distress signals in noisy environments with a significant performance improvement to other methods from the literature. Then, we deployed and assessed the trained convolutional neural network model on a Raspberry Pi that, along with the low-cost microphone, constituted a device for accurate real-time audio recognition. Source code and database are publicly available. Dataset: https://github.com/jfgf11/Problema-Especial.git
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [31] Deep Learning-based Telephony Speech Recognition in the Wild
    Han, Kyu J.
    Hahm, Seongjun
    Kim, Byung-Hak
    Kim, Jungsuk
    Lane, Ian
    18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION, 2017, : 1323 - 1327
  • [32] Deep Learning-Based Real-Time Traffic Sign Recognition System for Urban Environments
    Kim, Chang-il
    Park, Jinuk
    Park, Yongju
    Jung, Woojin
    Lim, Yong-seok
    INFRASTRUCTURES, 2023, 8 (02)
  • [33] A Review on Deep Learning-based Face Recognition Techniques
    Padma Suresh, L.
    Anil, J.
    2023 Innovations in Power and Advanced Computing Technologies, i-PACT 2023, 2023,
  • [34] Deep Learning-Based Violin Bowing Action Recognition
    Sun, Shih-Wei
    Liu, Bao-Yun
    Chang, Pao-Chi
    SENSORS, 2020, 20 (20) : 1 - 17
  • [35] A Deep Learning-based Unified Solution for Character Recognition
    Das, Avishek
    Rabby, A. K. M. Shahariar Azad
    Kowsar, Ibna
    Rahman, Fuad
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 1671 - 1677
  • [36] Deep Learning-Based Image Recognition of Agricultural Pests
    Xu, Weixiao
    Sun, Lin
    Zhen, Cheng
    Liu, Bo
    Yang, Zhengyi
    Yang, Wenke
    APPLIED SCIENCES-BASEL, 2022, 12 (24):
  • [37] Deep learning-based garbage image recognition algorithm
    Yuefei Li
    Wei Liu
    Applied Nanoscience, 2023, 13 : 1415 - 1424
  • [38] Deep learning-based face detection and recognition on drones
    Rostami M.
    Farajollahi A.
    Parvin H.
    Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (01) : 373 - 387
  • [39] Deep Learning-Based Improved Object Recognition in Warehouses
    Fouzia, Syeda
    Bell, Mark
    Klette, Reinhard
    IMAGE AND VIDEO TECHNOLOGY (PSIVT 2017), 2018, 10749 : 350 - 365
  • [40] Deep learning-based recognition and parameter characterization of antibubbles
    Bai, Lichun
    Chai, Zishu
    Lin, Sen
    CHEMICAL ENGINEERING SCIENCE, 2025, 304