Growth control of carbon nanotubes by plasma enhanced chemical vapor deposition

被引:13
|
作者
Sato, Hideki [1 ]
Sakai, Takamichi [1 ]
Suzuki, Atsushi [1 ]
Kajiwara, Kazuo [1 ]
Hata, Koichi [1 ]
Saito, Yahachi [2 ]
机构
[1] Mie Univ, Grad Sch Engn, Tsu, Mie 5148507, Japan
[2] Nagoya Univ, Grad Sch Engn, Chikusa Ku, Nagoya, Aichi 4648403, Japan
关键词
Carbon nanotubes; Plasma enhanced chemical vapor deposition; Catalyst; Nanoparticles; Field emitter;
D O I
10.1016/j.vacuum.2008.04.017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Plasma enhanced chemical vapor deposition (PECVD), which enables growth of vertically aligned carbon nanotubes (CNTs) directly onto a solid substrate, is considered to be a suitable method for preparing CNTs for nanoelectronics applications such as electron sources for field emission displays (FEDs). For these purposes, establishment of an efficient CNT growth process has been required. We have examined growth characteristics of CNTs using a radio frequency PECVD (RF-PECVD) method with the intention to develop a high efficiency process for CNT growth at a low enough temperature suitable for nanoelectronics applications. Here we report an effect of pretreatment of the catalyst thin film that plays an important role in CNT growth using RF-PECVD. Results of this study show that uniform formation of fine catalyst nanoparticles on the substrate is important for the efficient CNT growth. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:515 / 517
页数:3
相关论文
共 50 条
  • [21] Growth of carbon nanotubes by microwave plasma chemical vapor deposition (MPCVD)
    Guo, L
    Shanov, V
    Singh, RN
    CERAMIC NANOMATERIALS AND NANOTECHNOLOGY III, 2005, 159 : 177 - 183
  • [22] In situ diagnosis of chemical species for the growth of carbon nanotubes in microwave plasma-enhanced chemical vapor deposition
    Woo, YS
    Jeon, DY
    Han, IT
    Lee, NS
    Jung, JE
    Kim, JM
    DIAMOND AND RELATED MATERIALS, 2002, 11 (01) : 59 - 66
  • [23] Growth of carbon nanotubes by chemical vapor deposition
    Jung, M
    Eun, KY
    Lee, JK
    Baik, YJ
    Lee, KR
    Park, JW
    DIAMOND AND RELATED MATERIALS, 2001, 10 (3-7) : 1235 - 1240
  • [24] Plasma composition during plasma-enhanced chemical vapor deposition of carbon nanotubes
    Bell, MS
    Lacerda, RG
    Teo, KBK
    Rupesinghe, NL
    Amaratunga, GAJ
    Milne, WI
    Chhowalla, M
    APPLIED PHYSICS LETTERS, 2004, 85 (07) : 1137 - 1139
  • [25] Effective parameters on diameter of carbon nanotubes by plasma enhanced chemical vapor deposition
    Jeong, Kang Young
    Jung, Hyun Kyung
    Lee, Hyung Woo
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2012, 22 : S712 - S716
  • [26] Aligned carbon nanotubes via microwave plasma enhanced chemical vapor deposition
    Cui, H
    Palmer, D
    Zhou, O
    Stoner, BR
    AMORPHOUS AND NANOSTRUCTURED CARBON, 2000, 593 : 39 - 44
  • [27] Vertically aligned carbon nanotubes grown by plasma enhanced chemical vapor deposition
    Sato, H
    Tagegawa, H
    Saito, Y
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2003, 21 (06): : 2564 - 2568
  • [28] Preparation of Freestanding Carbon Nanotubes Using Plasma Enhanced Chemical Vapor Deposition
    Pekarek, Jan
    Vrba, Radimir
    Magat, Martin
    Jasek, Ondrej
    2011 34TH INTERNATIONAL SPRING SEMINAR ON ELECTRONICS TECHNOLOGY (ISSE 2011) - NEW TRENDS IN MICRO/NANOTECHNOLOGY, 2011, : 515 - 518
  • [29] A plasma enhanced chemical vapor deposition process to achieve branched carbon nanotubes
    Abdi, Y.
    Mohajerzadeh, S.
    Koohshorkhi, J.
    Robertson, M. D.
    Andrei, C. M.
    CARBON, 2008, 46 (12) : 1611 - 1614
  • [30] Effective parameters on diameter of carbon nanotubes by plasma enhanced chemical vapor deposition
    Kang Young JEONG
    Hyun Kyung JUNG
    Hyung Woo LEE
    Transactions of Nonferrous Metals Society of China, 2012, 22(S3) (S3) : 712 - 716