Lower bounds for Betti numbers of monomial ideals

被引:5
|
作者
Boocher, Adam [1 ]
Seiner, James [2 ]
机构
[1] Univ Utah, Salt Lake City, UT 84112 USA
[2] Univ Michigan, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Commutative algebra; Betti numbers; Monomial ideals; Buchsbaum-Eisenbud-Horrocks rank; conjecture; FREE RESOLUTIONS; FINITE-LENGTH; MODULES;
D O I
10.1016/j.jalgebra.2018.04.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I be a monomial ideal of height c in a polynomial ring S over a field k. If I is not generated by a regular sequence, then we show that the sum of the betti numbers of S/I is at least 2(c) + 2(c-1) and characterize when equality holds. Lower bounds for the individual betti numbers are given as well. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:445 / 460
页数:16
相关论文
共 50 条
  • [41] BETTI TABLES OF MONOMIAL IDEALS FIXED BY PERMUTATIONS OF THE VARIABLES
    Murai, Satoshi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (10) : 7087 - 7107
  • [42] Squarefree Monomial Modules and Extremal Betti Numbers
    Crupi, Marilena
    Ferro, Carmela
    ALGEBRA COLLOQUIUM, 2016, 23 (03) : 519 - 530
  • [43] MODULES OVER CATEGORIES AND BETTI POSETS OF MONOMIAL IDEALS
    Tchernev, Alexandre
    Varisco, Marco
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (12) : 5113 - 5128
  • [44] Betti numbers of modules of essentially monomial type
    Chang, ST
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (07) : 1917 - 1926
  • [45] Bounds on regularity of quadratic monomial ideals
    Blekherman, Grigoriy
    Jung, Jaewoo
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 176
  • [46] UPPER BOUNDS OF DEPTH OF MONOMIAL IDEALS
    Popescu, Dorin
    JOURNAL OF COMMUTATIVE ALGEBRA, 2013, 5 (02) : 323 - 327
  • [47] Betti numbers of symmetric shifted ideals
    Biermann, Jennifer
    de Alba, Hernan
    Galetto, Federico
    Murai, Satoshi
    Nagel, Uwe
    O'Keefe, Augustine
    Roemer, Tim
    Seceleanu, Alexandra
    JOURNAL OF ALGEBRA, 2020, 560 : 312 - 342
  • [48] Large lower bounds for the betti numbers of graded modules with low regularity
    Boocher, Adam
    Wigglesworth, Derrick
    COLLECTANEA MATHEMATICA, 2021, 72 (02) : 393 - 410
  • [49] Large lower bounds for the betti numbers of graded modules with low regularity
    Adam Boocher
    Derrick Wigglesworth
    Collectanea Mathematica, 2021, 72 : 393 - 410
  • [50] BETTI NUMBERS OF PERFECT HOMOGENEOUS IDEALS
    LORENZINI, A
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 60 (03) : 273 - 288