Nonlinear dynamics equation in p-adic string theory

被引:131
|
作者
Vladimirov, VS [1 ]
Volovich, YI
机构
[1] RAS, Steklov Math Inst, Moscow 117901, Russia
[2] Moscow MV Lomonosov State Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
p-adic string; pseudodifferential operator; nonlinear equations;
D O I
10.1023/B:TAMP.0000018447.02723.29
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate nonlinear pseudodifferential equations with infinitely many derivatives. These are equations of a new class, and they originally appeared in p-adic string theory. Their investigation is of interest in mathematical physics and its applications, in particular, in string theory and cosmology We undertake a systematic mathematical investigation of the properties of these equations and prove the main uniqueness theorem for the solution in an algebra of generalized functions. We discuss boundary problems for bounded solutions and prove the existence theorem for spatially homogeneous solutions for odd p. For even p, we prove the absence of a, continuous nonnegative solution interpolating between two vacuums and indicate the possible existence of discontinuous solutions. We also consider the multidimensional equation and discuss soliton and q-brane solutions.
引用
收藏
页码:297 / 309
页数:13
相关论文
共 50 条
  • [41] p-Adic Analogue of the Wave Equation
    Wu, Bo
    Khrennikov, Andrei
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (05) : 2447 - 2462
  • [42] On Some Exact Solutions in p-Adic Open-Closed String Theory
    Vladimirov, V. S.
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2012, 4 (01) : 57 - 63
  • [43] MULTILOOP CALCULUS IN P-ADIC STRING THEORY AND BRUHAT-TITS TREES
    CHEKHOV, LO
    MIRONOV, AD
    ZABRODIN, AV
    MODERN PHYSICS LETTERS A, 1989, 4 (13) : 1227 - 1235
  • [44] MULTILOOP CALCULATIONS IN P-ADIC STRING THEORY AND BRUHAT-TITS TREES
    CHEKHOV, LO
    MIRONOV, AD
    ZABRODIN, AV
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 125 (04) : 675 - 711
  • [45] On the Constructive Solvability of a Two-Dimensional Nonlinear Integral Equation Arising in the Theory of p-Adic Strings
    Khachatryan, Kh. A.
    Petrosyan, H. S.
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2022, 14 (SUPPL 1) : S74 - S82
  • [46] On a nonlinear p-adic dynamical system
    Rozikov U.A.
    Sattarov I.A.
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2014, 6 (1) : 54 - 65
  • [47] p-adic multiple zeta values I.p-adic multiple polylogarithms and the p-adic KZ equation
    Hidekazu Furusho
    Inventiones mathematicae, 2004, 155 : 253 - 286
  • [48] On p-adic string amplitudes in the limit p approaches to one
    M. Bocardo-Gaspar
    H. García-Compeán
    W. A. Zúñiga-Galindo
    Journal of High Energy Physics, 2018
  • [49] On p-adic string amplitudes in the limit p approaches to one
    Bocardo-Gaspar, M.
    Garcia-Compean, H.
    Zuniga-Galindo, Wa
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (08):
  • [50] On p-adic L-series, p-adic cohomology and class field theory
    Burns, David
    Macias Castillo, Daniel
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 732 : 55 - 83