A periodic solution for a second-order asymptotically linear Hamiltonian system

被引:16
|
作者
Zhao, Fukun [1 ]
Chen, Jin [1 ,2 ]
Yang, Minbo [3 ]
机构
[1] Yunnan Normal Univ, Dept Math, Kunming 650092, Yunnan, Peoples R China
[2] Zhaotong Teachers Coll, Dept Math, Zhaotong 657000, Yunnan, Peoples R China
[3] Zhejiang Normal Univ, Dept Math, Jinhua 321000, Zhejiang, Peoples R China
关键词
Second-order Hamiltonian system; Periodic solution; Critical point; HOMOCLINIC SOLUTIONS; INDEX;
D O I
10.1016/j.na.2008.08.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of a periodic solution of the following second-order Hamiltonian system: u(t) + del F(t, u(t)) = 0, t is an element of [0, T], where F(t, x) = -K(t, x) + W(t, x). Assuming that K satisfies the "pinching" condition and W is asymptotically linear at infinity, the existence of a nontrivial periodic solution is obtained via the Mountain Pass Theorem. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4021 / 4026
页数:6
相关论文
共 50 条