Browder type fixed point theorems and Nash equilibria in generalized games

被引:5
|
作者
Liu, Jiuqiang [1 ,2 ]
Wang, Mingyu [1 ]
Yuan, Yi [3 ]
机构
[1] Xian Univ Finance & Econ, China Xian Inst Silk Rd Res, Xian 710100, Shaanxi, Peoples R China
[2] Eastern Michigan Univ, Dept Math, Ypsilanti, MI 48197 USA
[3] Xian Univ Finance & Econ, Coll Business, Xian 710100, Shaanxi, Peoples R China
关键词
Browder fixed point theorem; Fan-Knaster-Kuratowski-Mazurkiewicz theorem; generalized games; Nash equilibrium; MAXIMAL ELEMENTS; EXISTENCE;
D O I
10.1007/s11784-020-00806-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present two generalizations of the well-known Browder fixed point theorem, one of which is equivalent to the well-known Fan-Knaster-Kuratowski-Mazurkiewicz theorem. As applications, we apply these fixed point theorems to derive existence theorems for Nash equilibria in generalized games which generalize some existing existence theorems in the literature, including the well-known equilibrium existence theorem by Arrow and Debreu (Econometrica 22:265-290, 1954) and the existence theorem by Cubiotti (Int J Game Theory 26:267-273, 1997).
引用
收藏
页数:16
相关论文
共 50 条
  • [41] SOME GENERALIZED FIXED-POINT THEOREMS
    SINGH, S
    SINGH, UN
    ANNALES DE LA SOCIETE SCIENTIFIQUE DE BRUXELLES SERIES 1-SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1975, 89 (03): : 369 - 374
  • [42] Fixed Point Theorems for Generalized Classes of Operators
    Ionescu, Cristiana
    AXIOMS, 2023, 12 (01)
  • [43] GENERALIZED CONTRACTIONS AND FIXED-POINT THEOREMS
    WONG, CS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 42 (02) : 409 - 417
  • [44] Generalized variational inequalities and fixed point theorems
    Seoul Natl Univ, Seoul, Korea, Republic of
    Nonlinear Analysis, Theory, Methods and Applications, 1998, 31 (1-2): : 207 - 216
  • [45] Generalized Normed Spaces and Fixed Point Theorems
    Khan, Kamran Alam
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2014, 13 (02): : 157 - 167
  • [46] FIXED-POINT THEOREMS FOR GENERALIZED CONTRACTION
    KHAN, MS
    SWALEH, M
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1984, 15 (09): : 984 - 990
  • [47] Browder-Type Theorems
    Aiena, Pietro
    FREDHOLM AND LOCAL SPECTRAL THEORY II: WITH APPLICATION TO WEYL-TYPE THEOREMS, 2018, 2235 : 361 - 417
  • [48] Fixed point theorems for generalized multivalued contraction
    Chandra N.
    Joshi M.C.
    Singh N.K.
    The Journal of Analysis, 2018, 26 (1) : 49 - 59
  • [49] Generalized Drazin-meromorphic invertible operators and Browder type theorems
    Gupta, Anuradha
    Kumar, Ankit
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (16): : 2615 - 2630
  • [50] Generalized Caristi's Fixed Point Theorems
    Abdul Latif
    Fixed Point Theory and Applications, 2009