Representations of knot groups and Vassiliev invariants

被引:1
|
作者
Altschuler, D
机构
[1] Inst. für Theoretische Physik, ETH-Hönggerberg
关键词
Vassiliev invariants; finite groups;
D O I
10.1142/S0218216596000254
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the number of homomorphisms from a knot group to a finite group G cannot be a Vassiliev invariant, unless it is constant on the set of (2, 2p+1) torus knots. In several cases, such as when G is a dihedral or symmetric group, this implies that the number of homomorphisms is not a Vassiliev invariant.
引用
收藏
页码:421 / 425
页数:5
相关论文
共 50 条