Nonparametric trend model for short term electricity demand forecasting

被引:0
|
作者
Zivanovic, R [1 ]
机构
[1] Technikon Pretoria, Pretoria, South Africa
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a novel nonparametric algorithm for short term electricity demand forecasting. The algorithm is based on local linear regression using sliding window with variable length. The method for selecting optimal window length for each local fit offers close insight into trade-off between bias and standard deviation of local regressions. Optimal window length is selected for each value in the load time-series: large window for linear change of load to reduce variability and small window when load departs from linear function to control bias. In the presented algorithm local linear regression is used to estimate trend component of the load time series and to forecast trend component by extrapolating with the fitted local linear function. Some features of the algorithm are demonstrated in the paper using examples from the historic load data recorded in the Namibian Power Utility.
引用
收藏
页码:347 / 352
页数:6
相关论文
共 50 条
  • [41] Short-term electricity price forecasting through demand and renewable generation prediction
    Belenguer, E.
    Segarra-Tamarit, J.
    Perez, E.
    Vidal-Albalate, R.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 229 : 350 - 361
  • [42] Ensembles of General Regression Neural Networks for Short-Term Electricity Demand Forecasting
    Dudek, Grzegorz
    PROCEEDINGS OF THE 2017 18TH INTERNATIONAL SCIENTIFIC CONFERENCE ON ELECTRIC POWER ENGINEERING (EPE), 2017, : 306 - 310
  • [43] Short-Term Forecasting of Hourly Electricity Power Demand Reggresion and Cluster Methods for Short-Term Prognosis
    Filipova-Petrakieva, Simona
    Dochev, Vencislav
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2022, 12 (02) : 8374 - 8381
  • [44] FORECASTING SHORT-TERM DEMAND
    REISMAN, A
    GUDAPATI, K
    CHANDRASEKARAN, R
    DARUKHANAVALA, P
    MORRISON, D
    INDUSTRIAL ENGINEERING, 1976, 8 (05): : 38 - 45
  • [45] A New Hybrid Model for Short-Term Electricity Load Forecasting
    Haq, Md Rashedul
    Ni, Zhen
    IEEE ACCESS, 2019, 7 : 125413 - 125423
  • [46] Hybrid Model for Very Short-Term Electricity Price Forecasting
    Hamilton, Geoffrey
    Abeygunawardana, Anula
    Jovanovic, Dejan P.
    Ledwich, Gerard F.
    2018 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2018,
  • [47] Dynamic Hybrid Model for Short-Term Electricity Price Forecasting
    Cerjan, Marin
    Matijas, Marin
    Delimar, Marko
    ENERGIES, 2014, 7 (05) : 3304 - 3318
  • [48] Short-term forecasting with a computationally efficient nonparametric transfer function model
    Liu, Jun. M.
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2023, 65 (03) : 187 - 212
  • [49] Electricity Demand Forecasting with a Novel Hybrid Model
    Wu, L. P.
    Yang, Q. S.
    Du, G. Q.
    Wang, J. H.
    INTERNATIONAL CONFERENCE ON AUTOMATION, MECHANICAL AND ELECTRICAL ENGINEERING (AMEE 2015), 2015, : 655 - 662
  • [50] Short-Term Electricity Price Forecasting
    Arabali, A.
    Chalko, E.
    Etezadi-Amoli, M.
    Fadali, M. S.
    2013 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PES), 2013,