Structure/function of the soluble guanylyl cyclase catalytic domain

被引:26
|
作者
Childers, Kenneth C. [1 ]
Garcin, Elsa D. [1 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Chem & Biochem, 1000 Hilltop Circle, Baltimore, MD 21250 USA
来源
基金
美国国家卫生研究院;
关键词
Soluble guanylyl cyclase; Adenylyl cyclase; Catalytic domain; Nitric oxide; S-nitrosation; Activation mechanism; NITRIC-OXIDE RECEPTOR; ADENYLYL-CYCLASE; CRYSTAL-STRUCTURE; YC-1; BINDING; FUNCTIONAL-CHARACTERIZATION; DIFFERENTIAL INHIBITION; SIGNALING HELIX; BETA-1; SUBUNIT; HEME; ACTIVATION;
D O I
10.1016/j.niox.2018.04.008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Soluble guanylyl cyclase (GC-1) is the primary receptor of nitric oxide (NO) in smooth muscle cells and maintains vascular function by inducing vasorelaxation in nearby blood vessels. GC-1 converts guanosine 5'-triphosphate (GTP) into cyclic guanosine 3',5'-monophosphate (cGMP), which acts as a second messenger to improve blood flow. While much work has been done to characterize this pathway, we lack a mechanistic understanding of how NO binding to the heme domain leads to a large increase in activity at the C-terminal catalytic domain. Recent structural evidence and activity measurements from multiple groups have revealed a low-activity cyclase domain that requires additional GC-1 domains to promote a catalytically-competent conformation. How the catalytic domain structurally transitions into the active conformation requires further characterization. This review focuses on structure/function studies of the GC-1 catalytic domain and recent advances various groups have made in understanding how catalytic activity is regulated including small molecules interactions, Cys-S-NO modifications and potential interactions with the NO-sensor domain and other proteins.
引用
收藏
页码:53 / 64
页数:12
相关论文
共 50 条
  • [21] Cellular distribution and function of soluble guanylyl cyclase in rat kidney and liver
    Theilig, F
    Bostanjoglo, M
    Pavenstädt, H
    Grupp, C
    Holland, G
    Slosarek, I
    Gressner, AM
    Russwurm, M
    Koesling, D
    Bachmann, S
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2001, 12 (11): : 2209 - 2220
  • [22] Age Impairs Soluble Guanylyl Cyclase Function in Mouse Mesenteric Arteries
    Zhong, Cheng
    Xu, Minze
    Boral, Senguel
    Summer, Holger
    Lichtenberger, Falk-Bach
    Erdogan, Cem
    Gollasch, Maik
    Golz, Stefan
    Persson, Pontus B.
    Schleifenbaum, Johanna
    Patzak, Andreas
    Khedkar, Pratik H.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (21)
  • [23] Inhibition of soluble guanylyl cyclase by superoxide
    Wingerter, O
    Srivastava, R
    Mülsch, A
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2003, 367 : R103 - R103
  • [24] Redox regulation of soluble guanylyl cyclase
    Muelsch, A
    Selemo, E
    Fichtlscherer, B
    Hoenicka, M
    CIRCULATION, 1999, 100 (18) : 264 - 264
  • [25] Impairment of soluble guanylyl cyclase by peroxynitrite
    Muelsch, A
    Weber, M
    Kloes, S
    Behrens, M
    Lauer, N
    Kojda, G
    CIRCULATION, 2000, 102 (18) : 351 - 351
  • [26] Gemfibrozil is a potential allosteric regulator of soluble guanylyl cyclase activity and function
    Sobolevsky, Michael
    Sharina, Iraida
    Martin, Emil
    FASEB JOURNAL, 2011, 25
  • [27] IMMUNOAFFINITY PURIFICATION OF SOLUBLE GUANYLYL CYCLASE
    WALDMAN, SA
    LEITMAN, DC
    MURAD, F
    METHODS IN ENZYMOLOGY, 1991, 195 : 391 - 396
  • [28] FUNCTIONAL DOMAINS OF SOLUBLE GUANYLYL CYCLASE
    WEDEL, B
    HARTENECK, C
    FOERSTER, J
    FRIEBE, A
    SCHULTZ, G
    KOESLING, D
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (42) : 24871 - 24875
  • [29] Redox regulation of soluble guanylyl cyclase
    Shah, Rohan C.
    Sanker, Subramaniam
    Wood, Katherine C.
    Durgin, Brittany G.
    Straub, Adam C.
    NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 2018, 76 : 97 - 104
  • [30] Discovery of stimulator binding to a conserved pocket in the heme domain of soluble guanylyl cyclase
    Wales, Jessica A.
    Chen, Cheng-Yu
    Breci, Linda
    Weichsel, Andrzej
    Bernier, Sylvie G.
    Sheppeck, James E., II
    Solinga, Robert
    Nakai, Takashi
    Renhowe, Paul A.
    Jung, Joon
    Montfort, William R.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (05) : 1850 - 1864